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losses—yet such approaches falter when confronting fire’s stochastic
\'fv?mfgef%itecﬁon morphology. Introducing Fire-YOLO, a streamlined detector built by
YOLOVS embedding Channel Attention Modules (C2f-SE) into YOLOv8n’s backbone,
Attention Mechanism the hypothesis that detection fidelity stems not from structural depth, but from
e eamcreten (56) directed attention—a principle embedded in Fire-YOLO's architecture. These
Real-time Detection of Objects modules act as dynamic semantic filters, amplifying flame chromatic
Correspondence- signa_tures and smok_e textures while muting_envir(_)nmental clutter. Rigorous

ablation exposes pitfalls of alternatives—inception blocks and MPDIoU
Ahmed Yassin Mohammad losses degrade localization accuracy by failing to generalize across fire’s non-
ahmedyassin@uomosul.edu.ig stationary spatial dynamics. Fire-YOLO avoids these traps. It achieves 79.5%

mean Average Precision (mAP), computed as the average over loU thresholds
from 0.5 to 0.95 with 1.6% increments, 78% recall, and sustained 141 FPS
inference on NVIDIA Tesla T4. There is no compromise between rigor and
speed. This architecture redefines feasibility for low-cost, real-time fire
warning systems.
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1. Introduction Massive advances have been made using
Fire and smoke, those rebellious physical elements, Convolutional Neural Networks (CNNs) in this field,
are not subject to those laws of Euclidean geometry surpassing primitive methods of manual color
that govern solid bodies. When traditional computer processing. With the advent of the YOLO (You Only
vision algorithms try to "frame" the flame [1], they Look Once) family [6], [7], the field moved from the
face an existential dilemma: How do you set era of "slow analysis" to the era of "real-time
boundaries for something that changes shape several detection" [8]. However, the frantic race to the
times in a second? While object detection systems complexity of these models has created a new
have been able to detect cars, pedestrians, and fixed problem: "architectural obesity." Researchers add
shape objects with astonishing accuracy [2], they layer after layer, increasing the depth of the network
remain the "elusive enemy" of Al: they color the in the hope of higher accuracy, ignoring the fact that
background, form a flicker that resembles the increasing depth does not necessarily mean greater
reflections of the sun on the glass, and fade like a "understanding” [9], [10]. The deep lattice may
mirage [3], [4], [5]. This stochastic nature makes preserve the shape of the fire, but it may not
traditional monitoring systems, which rely on smoke understand its texture, trapping it in the trap of false
and heat sensors, unable to respond in the "golden alarms as soon as it sees a bright orange light or a
moment", those first seconds before sparks turn into sunset [11].

a raging inferno [6].
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In this sense, the accurate fire detection does not
require a "bigger brain," but rather a "more focused
eye." It doesn't need the millions of extra
computational transactions that overload Edge
devices; it needs an intelligent mechanism that
redirects network resources toward what really
matters. This paper presents Fire-YOLO, a hybrid
model that re-engineered the backbone of the
YOLOvV8n network via the injection of Channel
Attention Units (C2f-SE). This mechanism acts as an
orchestra, reducing background noise and enhancing
faint flame signals. Through a rigorous ablation
study, the scientifically proven that intelligent
simplification trumps blind complexity, as the
proposed model has outperformed attempts to
integrate complex geometric loss functions
(MPDIoU) or manifold lattice structures (Inception)
[12], offering a solution that balances lightweight and
surgical precision, paving the way for intelligent and
sustainable early warning systems.
2. Related work
Scientific research in the field of optical fire
detection is similar to the journey of biological
evolution: it began with simple organisms based on
instinctive rules (manual feature engineering),
evolved into complex and heavy-moving organisms
(traditional deep webs), and finally into agile and
intelligent organisms (attention-aided instantaneous
detection systems). This review spans three pivotal
eras, highlighting the gaps that this paper seeks to fill:
2.1. Traditional Approaches and Feature
Engineering.
Before the dawn of deep learning, the first attempts
were based on a rudimentary physical understanding
of the properties of fire: color, motion, and flicker.
The researchers hypothesized that fire could be
framed within rule-based algorithms.
Color modeling: Celik et al. [13] focused on
developing algorithms that isolate fire pixels in the
YCbCr color space, assuming that "color" is the only
identifier. In the same vein, Toulouse et al. [14]
proposed to combine chromatography with
geometric analysis of flame length. In another study,
Yuquan Zhou et al. [15] presented a model based on
the RGB model shared with HSI to generate strict
threshold rules for fire insulation.
Kinetic and histological analysis: Recognizing the
inadequacy of color alone, Islam Osman et al. [16]
combined motion analysis using subtraction
techniques with color descriptors, achieving
acceptable accuracy in enclosed environments.
Xueyi Kong et al. and [17] focused on spatial
frequency analysis (Spatial Frequency) to distinguish
between fire "turbulence™ and the movement of solid
objects.
Despite their speed, these algorithms suffered from
"contextual blindness": the mere passing of an orange
shirt or the reflection of sunlight was enough to
trigger a false alarm, making them unsuitable for
unconstrained environments.

2.2. The Dominance of Deep Heavy
Networks CNNs paradigm:

With the AlexNet revolution, the thought model
shifted from "feature making" to "feature learning".
This era was characterized by the use of deep and
massive neural networks, which were highly accurate
but computationally expensive.
Patch-based classification: In pioneering work,
Karim et al. [18] adapted GoogleNet and AlexNet
architectures to detect fires in surveillance videos,
achieving a paradigm shift in accuracy compared to
traditional methods.
Two-stage Detectors: Lin Zhang et al. [19] explored
the use of Faster R-CNN, where the network first
generates "Region Proposals" and then classifies
them. Despite the high resolution, the frame rate
(FPS) was very low.
Ultra-deep networks: Valikhujaev et al. [20]
presented an expanded model based on VGGL16, in
which the depth of layers was increased to extract
more abstract features.
These models were powerful but slow and heavy.
Relying on two-phase detectors or massive networks
has made deploying them on Internet of Things (loT)
devices or drones very difficult and expensive, as

real-time detection requires a response in
milliseconds.
2.3. Real-time Detection & Attention
Mechanisms:

In the era of "speed and intelligence", where single-
phase algorithms (YOLO, SSD) that balance
accuracy and speed dominated, attention
mechanisms began to be integrated to compensate for
the decrease in network depth [21], [12], [22].
Evolution of the YOLO family: Yu et al. [23]
provided improvements to YOLOV5 for working in
industrial environments, while Chatterjee et al. [24]
demonstrated the modern capabilities of YOLOVS in
handling complex scenarios. In a similar vein, Jadon
et al. [25] proposed the "FireNet" model, a very
miniature version designed to run on the Raspberry
Pi, albeit at the expense of accuracy.
Integrating attention mechanisms: Researchers
realized that speed alone is not enough. Luan et al.
[26] integrated the CBAM (Convolutional Block
Attention Module) module with YOLOV5 to improve
spatial focus. In a recent study by Xue et al. [27],
vision transformers were used to integrate global
contextual information with local features. Zhang et
al. [12] also presented a hybrid model that uses the
ECA (Efficient Channel Attention) mechanism to
improve channel response in smoke detection
networks.

2.4. Basic structure: why YOLOvV8? (the

baseline architecture)

YOLOVS represents the pinnacle of evolution in the
YOLO series, which is fully supported by Ultralytics
libraries, surpassing its predecessors (v5 and v7)
thanks to its anchor-free architecture and task-
aligned assigner (TAS) search mechanism [28].
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However, the "crown jewel" of this model is the
partial cross-stage bottleneck with a convolutions
(C2f) module, whose design was inspired by the
ELAN architecture in YOLOvV7 [11].
The C2f module is not just a data passage; it is a
gradient flow mechanism that prevents information
from fading through deep layers. Mathematically, if
we consider ( x ) to be the input to the unit, C2f
divides it and passes it through two parallel paths,
enriching the semantic diversity of features (feature
richness) before merging them again. However, the
standard C2f treats all Feature Channels quite
equally. In images of fires, channel 50 may carry vital
information about the "color red," while channel 51
may only carry "background noise." Treating the two
channels equally is a waste of computational
resources and confusion for the network.

2.5. Research gap
Most recent studies tend to "stack™ complex units of
attention (such as CBAM or Transformers) that add
a computational load that may eliminate the speed
advantage of YOLO. A few studies have examined
the effect of modern geometric loss functions, such
as (MPDIoU), on "variable-shaped" objects such as
fire and smoke. The paper proposes to bridge this gap
by introducing Fire-YOLO, where the demonstration
of the integration of the Light Channel Attention
mechanism specifically within the bottleneck (C2F)
is the "golden combination” that outperforms more
complex structures, while providing a rare critical
analysis of the failure of rigorous engineering
constraints in flame modeling.
3. Proposed Methodology
The challenge in detecting fires is not only to "see"
the flame, but to "discern" it in the midst of
overwhelming visual chaos. So, in this work, the
Fire-YOLO model, a hybrid structure that integrates
the response speed inherent in YOLOv8 with the
perceptual depth of the "Channel Attention”
mechanism. This model is designed to act as a "smart
filter”, passing important features (fire color, smoke
texture) and suppressing noise (street lights,
reflections), without sacrificing the computational
efficiency needed for real-time applications.

3.1. Core innovation: the proposed C2f-SE

module:

To solve the problem above, an integrated Squeeze-
and-Excitation (SE) block is immediately after the
bottleneck in the C2F module. This light module does
not add much load to the model (a slight increase in
parameters), but it does give it a "self-awareness™ of
the importance of each channel. The process is
carried out through three precise mathematical
stages:
First: Pressure (Squeeze - Global Information
Embedding): Since convolution operates in a local
space, the network lacks the vision of the full picture.
Compress the spatial information for each (c)
channel via the Global Average Pooling (GAP)
process. If the input (u) with dimensions of

(c x Hx W). It produces a descriptor of the (z.)
channel as follows:

Ze = qu(uc) = ﬁ ?:1 Zﬁluc(iﬂj) 1)
This process converts two-dimensional features into
a single real value that expresses the "power
distribution™ in that channel.

Second: Excitation - Adaptive Recalibration:
Herein lies the magic. The use of a small neural
network (two fully connected gates FC Layers) to
learn the nonlinear relationships between channels. It
aims to capture channel dependencies. The activation
vector (s) is calculated via the equation:

5 =Fr(z2, W) = O_(WZS(le)) (2)
Where:

o is the ReLU activation function (to ensure non-
linearity).

6 isasigmoid function (to convert values to a range
[0, 1] to represent "weights of importance™).

W, W, are the weights of the connected layers, and
act as a "bottleneck™ to reduce complexity.

Third: Scale - Reweighting

Finally, use the resulting weights (s.) to reshape the
original feature map. Important channels (which
carry the features of fire or smoke) are amplified, and
noise is suppressed:

Xe = Fscare (U, Sc) = s - U 3)

By integrating this mechanism into the C2F, then get
the C2f-SE, a unit that is able to dynamically adapt to
the content of the image, whether it's a massive forest
fire accompanied by smoke plumes or a small candle
flame. Figure 1 shows the proposed architecture.

Fire-YOLO

Input Image

Output Detection

Detected Fire & Smoke

Forest Fire Image (RGB) Backbone Ll \ Head
\

Zoom-in: C2f-SE Block Mechanism (Squeeze-anc-Excitation with C2f)

Wdenéty Path

ingat
Fealures Atlontion
©xHxW) P Gopaung  FC FC_ - Simoid wegh
| Pooling  (Reduction) (Expansion) ©xix)

Figure 1: The Proposed Architecture Shows the
C2f-SE Placement in the Yolo Backbone

1.1. Loss Function Strategy: Why CloU?
(Loss Function Strategy)

To quest for perfection, the loss function has been
tested Minimum Point Distance loU (MPDIoU) [29],
which assumes that reducing the distance between the
top and bottom corners of the squares gives a more
precise  positioning. However, the proposed
methodology experiments (as shown in the results
section) have proven that MPDIoU suffers from what
is called "geometric over-rigidity" when dealing with
non-rigid bodies. Fire has no sharp angles; it is a
random mass. Trying to force the grid to align
fictitious angles with micron precision led to training
instability. So, they settle on the CloU (Complete
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IoU) function as an optimal option in the Fire-YOLO
model [30]. CloU takes into account three key factors
in a balanced way:

1. Overlap Area.

2. Central Point Distance.

3. Aspect Ratio.

The CloU equation is defined as follows:

Lotoy = 1 ToU + 2227 @)
where (v) measures the consistency of the aspect
ratio, and (p) is the Euclidean distance. This balance
allowed the proposed model to focus on "containing"
the fire within the square rather than obsessing with
alignment of corners, resulting in faster convergence
and more robust performance (Robustness).
2. Experimental Setup

The validity of any scientific conclusion lies in
its reproducibility. In this section, a review of the
software environment, hardware, and data that
formed the "theater" of the proposed methodology
experiments, to ensure complete transparency.

2.1. Dataset Description
A robust model needs robust data. For Fire-YOLO
training, a custom dataset was built focused on fire
ecological diversity. The collection consists of 8000
images, carefully collected to include day and night
scenarios, wildfires, urban fires, as well as difficult
visual interference situations (such as fog and thick
smoke). Data were broken down by a standard ratio:
70% for training, 20% for validation, and 10% for
testing[31]. The data were characterized with high
accuracy for two main categories: "Fire" and
"Smoke", to enable the model to understand the
causal relationship between them.

2.2. Training Environment
All experiments were performed using the PyTorch
framework on the Google Colab Pro platform. An
NVIDIA Tesla T4 GPU with 16 GB VRAM was
harnessed to ensure faster calculations. To ensure
fairness of comparison, the Hyperparameters for all
models have been standardized as shown in Table 1

+ av

follows:
Table 1: Standardized Hyperparameters to
Identify the Conditions
Hyperparameters | description
Number of epochs 50 epochs, which proved sufficient to
reach the stage of convergence without
entering into overfitting.
Batch Size 16
Optimizer AdamW with an Initial Learning Rate of
0.001667,
With a Momentum of 0.9, to ensure a
stable update of weights.
Image Size 640 x 640 pixels.
Mosaic was activated in the first 40 eras to
Augmentation enhance the model's ability to detect
small objects, and then discontinued in
the last 10 epochs to allow the model to
adjust its stability to natural images, a
technique that has proven to be effective
in improving positioning accuracy [32].

1.1. Evaluation Metrics
Not only was abstract accuracy relied upon, but a
comprehensive metric matrix was used according to
COCO standards:
. (mAP@50-95): which is the standard that
measures average accuracy across multiple IoU
thresholds from 0.5 to 0.95. This scale is equivalent
to models that locate the fire with high accuracy.
2. Recall: In fire applications, a fire "miss" is
considered a disaster, while a "false alarm" is just an
inconvenience. So, the emphasis was on maximizing
the value of the return to ensure safety.
3. Inference Time: measured in milliseconds (ms), to
ensure that the model is valid for real-time operation.

2. Results and Discussion

The experiences showed interesting results about
the triumph of ‘"smart simplification." The
comparative performance of the five models was
developed and tested under identical conditions.

2.1. Quantitative Analysis: The Supremacy

of the Hybrid Model

To compare the results clearly, the results of the
Ablation Study for five experiments were collected in
Table 2, showing what was achieved during the same
laboratory conditions of the models and the
measurement of Loss Function, Pre-trained,
Precision, Recall, mAP@50, and mAP@50-95.

Table 2: Ablation Study Results Summary

Model Architecture | Loss Function Pre-trained? | Precision | Recall | mMAP@50 | mAP@50-95
YOLOv8-Baseline | Standard CloU Yes 94.2% | 77.7% 85.1%
YOLO-From-Scratch | YOLOV8 + C2f SE | CloU No 94.8% | 75.7% 83.2%
YOLO-Fusion YOLOv8 +C2f_SE | MPDIoU Yes 90.0% | 72.0% 82.0%
YOLO-Inception YOLOVS8 + Inception | CloU Yes 89.5% | 68.4% 79.5%
Fire-YOLO (Ours) | YOLOv8 + C2f_SE | CloU Yes 95.9% | 78.0% 86.7%

The proposed Fire-YOLO model has achieved the
highest performance in all biometrics. Its 0.9%
outperformance in mAP@50-95 and 1.6% in
mAP@50 over the baseline may seem numerically
simple, but in the world of object detection, this
increase is considered a "net gain", especially since it
was accompanied by an improvement in recall to
0.78. This means that the model not only sees the fire
more accurately, but also "misses" fewer fires, which
is the most important standard in safety systems.

2.2. Failure Analysis: Why Failed Models?
(Failure Analysis)

The YOLO-Inception experience is both a harsh and
useful lesson. The drop in accuracy to 55.4%
confirms the basic premise: the addition of multi-
scale filters in parallel (as Inception modules do)
dispersed the network rather than enriched it. These
units appear to have generated Feature Maps Noising
that caused the network to lose the ability to discern
the exact boundaries of the flames, raising the rate of
false alarms insanely, as shown in Figure 2:
Comparison of Models Showing Training Stability.
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(@) Validation Box Loss

(B) Mean Average Precision (mAP@50-93)

Figure 2: Comparison of Models Showing
Training Stability

The YOLO-Fusion experiment (integrating SE with

MPDIoU) revealed an interesting incompatibility.

The MPDIoU function attempts to reduce the

Euclidean distance between the corners of the

squares, and since the fire is "fluid", forcing the grid
to strict geometric positioning hindered the process
of learning the chromatic features provided by the SE
module.
1.1. Visual & Confusion Matrix Analysis

To understand the "behavior" of the models and not
just their results, confusion matrices were analyzed.
Figure 3: The Comparison of Confusion Matrices
shows Fire-YOLO's ability to reduce false positives
and separate fire categories from smoke more
effectively than complex models.

) . | .” |

Ak

(a) YOLOvS8-Baseline (b) YOLO-Fusion*

(c) YOLO-Inception*

(d) Fire-YOLO (Ours)*

* (b) YOLO-Fusion (MPDIoU): (Fire/Smoke
mixing errors appear).

* (¢) YOLO-Inception: (High Background errors
appear - misplaced blue boxes).

* (d) Fire-YOLO (Ours): (Very clean matrix, the
main diameter is dark, and the rest of the fields are
almost zero).

Figure 3: Comparison of Confusion Matrices
Distinction between fire and smoke: The proposed
model, Fire-YOLO, has demonstrated superior
disentanglement. The model recorded only 8 cases of
misclassification between the fire and

Fire YOLO (Ours)
(Accurate Datection)

smoke categories. In contrast, other models
(especially those using MPDIoU) experienced
mixing cases of more than 100 cases. This success
was attributed to the C2f-SE's '"recalibration"
mechanism, which allowed the network to learn that
"flying gray" (smoke) is fundamentally different
from "orange glow" (fire), even if they are located in
the same spatial space.

Figure 4 shows examples of the accurate detection
of the Fire-YOLO model, while the baseline model
misses (false alarms) in fire and smoke detection.

Fire-YOLO {Our=)
(Accurate Detection)

Figure 4: Examples of Miss Detection of Fire and Smoke by Baseline Model
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Ghost Detections: In the Inception experiment, the
model classified hundreds of backgrounds as fires.
Fire-YOLO has maintained a very low False Positive
rate, making it reliable for operating in open
environments without causing unwarranted panic.
1.1. The Cold Start Effect
The From Scratch training experiment achieved a
respectable accuracy (77.4%), demonstrating that the
quality and richness of the dataset were collected.
However, the gap (2.1%) between it and the model
that used transfer learning confirms that the network's
"prior experience" of seeing the world (via COCO
weights) gives it a critical advantage in understanding
complex edges and shapes, which cannot be easily
compensated for by a limited number of training
periods.
1.2. Model complexity and inference speed
In disaster management equations, time is not just
money; time is life. A fire detection system that
delays milliseconds could mean the difference
between controlling a small spark and a catastrophic
spread. Therefore, assessing the "agility" of a model
is just as important as assessing its accuracy. In
designing the Fire-YOLO, to break the traditional
"Accuracy-Efficiency Trade-off" (Accuracy Trade-
off), where accuracy usually comes at the expense of
speed. Table 3, The Comparison of Computational
Efficiency and Speed of Implementation, highlights
the "economics of performance" of the tested models.
To assess the computational load, to measure three
vital indicators:
1. Number of parameters: to measure the required
memory size.
2. Floating Point Operations (GFLOPs): to measure
theoretical computational complexity.
3. FPS: to measure the actual speed on the Tesla T4
gear, including pre-processing and post-processing
time (NMS).
Table 3: The Comparison of Computational
Efficiency and Speed of Implementation

Model Parameters (M) | GFLOPs | Inference Time (ms) | FPS | mAP Gain vs. Cost

'YOLOV8n (Baseline) | 3.01 8.19 6.8 ms ~147 | Reference

'YOLO-Fusion 3.04 8.22 7.1ms ~141 | Low ROI*

'YOLO-Inception 4.15 115 12.4ms ~80 | Negative ROI

Fire-YOLO (Ours) | 3.04 8.22 7.1ms ~141 | High ROI

* The term "ROI" (Return on Investment)
1.1. Cost-Benefit Analysis

The numbers reveal a striking engineering fact: the
integration of C2f-SE modules added a "marginal"
increase in the number of transactions estimated to be
only 0.03 million coefficients, and a near-zero
increase in GFLOPs. This is due to the ingenious
design of the SE block; it reduces the spatial
dimensions to (H x W) via global pooling before
performing calculations, making its computational
cost very minimal compared to standard wrap layers.
In contrast, the model maintained an inference speed
of 141 frames per second (FPS). In practice, this
means that Fire-YOLO is capable of processing live
video from 4 or 5 surveillance cameras
simultaneously (real-time multi-stream) using a

single mid-power graphics card. In stark contrast, the
YOLO-Inception model has fallen into the trap of
"arithmetic inflation." The addition of Parallel
Branches almost doubled the inference time,
dropping the speed to 80 FPS, with no significant
improvement in accuracy (on the contrary, it
decreased).

1.2. Operational Conclusion
This analysis proves that Fire-YOLO is not just an
academic experiment, but a ready-made solution for
industrial deployment. The slight increase in
processing time (0.3 ms) is a very "small tax" for a
quantum leap in excellence, accuracy, and smoke
separation, making it an ideal candidate to work on
embedded edge devices such as the NVIDIA Jetson
Nano or Raspberry Pi 5 in the near future.
2. Conclusion and Future Directions

In the ongoing battle against wildfires and
installations, the technical dilemma is not the
"scarcity" of algorithms, but their "blindness" to the
physical nature of fire. This research was based on the
fundamental premise that treating fire as a solid
object with fixed geometric boundaries is a
methodological error, and that the solution lies in
enhancing the network's "sensory awareness" rather
than increasing its "muscle mass." Through the
development of the Fire-YOLO model, it has been
experimentally demonstrated that the integration of
the Channel Attention Mechanism (C2f-SE) within
the YOLOvV8n architecture represents an ideal
balance point between accuracy and efficiency. While
the model achieved an accuracy of 79.5% mAP and a
141 FPS inference speed, the most significant
achievement was its superior ability to "visual
disentanglement" between flames and smoke,
ignoring the light distractions that have long confused
traditional models. This study makes three important
scientific contributions:
Triumph of simplification: The prevailing idea that
more complex structures (such as Inception) are
always better has been refuted. It has been shown that
architectural complexity can turn into "noise" when
dealing with fluid objects.
Critique of rigorous engineering: Detecting the
inadequacies of precision-distance-dependent loss
functions (MPDIoU) in modeling random shapes like
fire, and reconsidering more holistic loss functions
such as CloU in this specific context.
Industrial feasibility: A solution has been provided
that does not stop at the laboratory limits, but has the
technical elements to work immediately on existing
monitoring systems without the need to upgrade
equipment.
3. Future Directions

Despite the promising results, the way is still
being paved for further exploration and development.
In future upcoming works, I may plan to focus on the
following axes:
Model Quantization: Investigate the impact of
converting model resolution from FP16 to INT8
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using techniques such as TensorRT, to deploy it to

very small, low-power UAVs.

Multimodal Fusion: The fire may be hidden behind

thick smoke that is invisible to the naked eye (or an

RGB camera). Combining Thermal Imagery data

with the current model could raise the level of

detection to unprecedented degrees, especially on
nights.

Knowledge Distillation: Training a huge and

complex "Teacher Model", and using it to teach the

Student Model, to convey to it the "wisdom" of large

networks without carrying their computational

burden.

Fire-YOLO is not just the end of academic research;

it is a key building block towards a new generation of

early warning systems that "understand" what they
see, to be the first line of defense in protecting lives
and property.
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