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 Balancing detection fidelity for amorphous hazards like fire and smoke 

against edge-device constraints remains a critical challenge. Prevailing 

methods compound architectural complexity or enforce rigid geometric 

losses—yet such approaches falter when confronting fire’s stochastic 

morphology. Introducing Fire-YOLO, a streamlined detector built by 

embedding Channel Attention Modules (C2f-SE) into YOLOv8n’s backbone, 

the hypothesis that detection fidelity stems not from structural depth, but from 

directed attention—a principle embedded in Fire-YOLO's architecture. These 

modules act as dynamic semantic filters, amplifying flame chromatic 

signatures and smoke textures while muting environmental clutter. Rigorous 

ablation exposes pitfalls of alternatives—inception blocks and MPDIoU 

losses degrade localization accuracy by failing to generalize across fire’s non-

stationary spatial dynamics. Fire-YOLO avoids these traps. It achieves 79.5% 

mean Average Precision (mAP), computed as the average over IoU thresholds 

from 0.5 to 0.95 with 1.6% increments, 78% recall, and sustained 141 FPS 

inference on NVIDIA Tesla T4. There is no compromise between rigor and 

speed. This architecture redefines feasibility for low-cost, real-time fire 

warning systems. 
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1. Introduction 

Fire and smoke, those rebellious physical elements, 

are not subject to those laws of Euclidean geometry 

that govern solid bodies. When traditional computer 

vision algorithms try to "frame" the flame [1], they 

face an existential dilemma: How do you set 

boundaries for something that changes shape several 

times in a second? While object detection systems 

have been able to detect cars, pedestrians, and fixed 

shape objects with astonishing accuracy [2], they 

remain the "elusive enemy" of AI: they color the 

background, form a flicker that resembles the 

reflections of the sun on the glass, and fade like a 

mirage [3], [4], [5]. This stochastic nature makes 

traditional monitoring systems, which rely on smoke 

and heat sensors, unable to respond in the "golden 

moment", those first seconds before sparks turn into 

a raging inferno [6]. 

Massive advances have been made using 

Convolutional Neural Networks (CNNs) in this field, 

surpassing primitive methods of manual color 

processing. With the advent of the YOLO (You Only 

Look Once) family [6], [7], the field moved from the 

era of "slow analysis" to the era of "real-time 

detection" [8]. However, the frantic race to the 

complexity of these models has created a new 

problem: "architectural obesity." Researchers add 

layer after layer, increasing the depth of the network 

in the hope of higher accuracy, ignoring the fact that 

increasing depth does not necessarily mean greater 

"understanding" [9], [10]. The deep lattice may 

preserve the shape of the fire, but it may not 

understand its texture, trapping it in the trap of false 

alarms as soon as it sees a bright orange light or a 

sunset [11]. 
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In this sense, the accurate fire detection does not 

require a "bigger brain," but rather a "more focused 

eye." It doesn't need the millions of extra 

computational transactions that overload Edge 

devices; it needs an intelligent mechanism that 

redirects network resources toward what really 

matters.  This paper presents Fire-YOLO, a hybrid 

model that re-engineered the backbone of the 

YOLOv8n network via the injection of Channel 

Attention Units (C2f-SE). This mechanism acts as an 

orchestra, reducing background noise and enhancing 

faint flame signals. Through a rigorous ablation 

study, the scientifically proven that intelligent 

simplification trumps blind complexity, as the 

proposed model has outperformed attempts to 

integrate complex geometric loss functions 

(MPDIoU) or manifold lattice structures (Inception) 

[12], offering a solution that balances lightweight and 

surgical precision, paving the way for intelligent and 

sustainable early warning systems. 

2. Related work 

Scientific research in the field of optical fire 

detection is similar to the journey of biological 

evolution: it began with simple organisms based on 

instinctive rules (manual feature engineering), 

evolved into complex and heavy-moving organisms 

(traditional deep webs), and finally into agile and 

intelligent organisms (attention-aided instantaneous 

detection systems). This review spans three pivotal 

eras, highlighting the gaps that this paper seeks to fill: 

2.1. Traditional Approaches and Feature 

Engineering. 

Before the dawn of deep learning, the first attempts 

were based on a rudimentary physical understanding 

of the properties of fire: color, motion, and flicker. 

The researchers hypothesized that fire could be 

framed within rule-based algorithms. 

Color modeling: Celik et al. [13] focused on 

developing algorithms that isolate fire pixels in the 

YCbCr color space, assuming that "color" is the only 

identifier. In the same vein, Toulouse et al. [14] 

proposed to combine chromatography with 

geometric analysis of flame length. In another study, 

Yuquan Zhou et al. [15] presented a model based on 

the RGB model shared with HSI to generate strict 

threshold rules for fire insulation. 

Kinetic and histological analysis: Recognizing the 

inadequacy of color alone, Islam Osman et al. [16] 

combined motion analysis using subtraction 

techniques with color descriptors, achieving 

acceptable accuracy in enclosed environments. 

Xueyi Kong et al. and [17] focused on spatial 

frequency analysis (Spatial Frequency) to distinguish 

between fire "turbulence" and the movement of solid 

objects. 

Despite their speed, these algorithms suffered from 

"contextual blindness": the mere passing of an orange 

shirt or the reflection of sunlight was enough to 

trigger a false alarm, making them unsuitable for 

unconstrained environments. 

2.2. The Dominance of Deep Heavy 

Networks CNNs paradigm: 

With the AlexNet revolution, the thought model 

shifted from "feature making" to "feature learning". 

This era was characterized by the use of deep and 

massive neural networks, which were highly accurate 

but computationally expensive. 

Patch-based classification: In pioneering work, 

Karim et al. [18] adapted GoogleNet and AlexNet 

architectures to detect fires in surveillance videos, 

achieving a paradigm shift in accuracy compared to 

traditional methods. 

Two-stage Detectors: Lin Zhang et al. [19] explored 

the use of Faster R-CNN, where the network first 

generates "Region Proposals" and then classifies 

them. Despite the high resolution, the frame rate 

(FPS) was very low.  

Ultra-deep networks: Valikhujaev et al. [20]  

presented an expanded model based on VGG16, in 

which the depth of layers was increased to extract 

more abstract features. 

These models were powerful but slow and heavy. 

Relying on two-phase detectors or massive networks 

has made deploying them on Internet of Things (IoT) 

devices or drones very difficult and expensive, as 

real-time detection requires a response in 

milliseconds. 

2.3. Real-time Detection & Attention 

Mechanisms: 

In the era of "speed and intelligence", where single-

phase algorithms (YOLO, SSD) that balance 

accuracy and speed dominated, attention 

mechanisms began to be integrated to compensate for 

the decrease in network depth [21], [12], [22]. 

Evolution of the YOLO family: Yu et al. [23] 

provided improvements to YOLOv5 for working in 

industrial environments, while Chatterjee et al. [24] 

demonstrated the modern capabilities of YOLOv8 in 

handling complex scenarios. In a similar vein, Jadon 

et al. [25] proposed the "FireNet" model, a very 

miniature version designed to run on the Raspberry 

Pi, albeit at the expense of accuracy.  

Integrating attention mechanisms: Researchers 

realized that speed alone is not enough. Luan et al. 

[26] integrated the CBAM (Convolutional Block 

Attention Module) module with YOLOv5 to improve 

spatial focus. In a recent study by Xue et al. [27], 

vision transformers were used to integrate global 

contextual information with local features. Zhang et 

al. [12] also presented a hybrid model that uses the 

ECA (Efficient Channel Attention) mechanism to 

improve channel response in smoke detection 

networks. 

2.4. Basic structure: why YOLOv8? (the 

baseline architecture) 

YOLOv8 represents the pinnacle of evolution in the 

YOLO series, which is fully supported by Ultralytics 

libraries, surpassing its predecessors (v5 and v7) 

thanks to its anchor-free architecture and task-

aligned assigner (TAS) search mechanism [28]. 
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However, the "crown jewel" of this model is the 

partial cross-stage bottleneck with a convolutions 

(C2f) module, whose design was inspired by the 

ELAN architecture in YOLOv7 [11]. 

The C2f module is not just a data passage; it is a 

gradient flow mechanism that prevents information 

from fading through deep layers. Mathematically, if 

we consider ( 𝑥 ) to be the input to the unit, C2f 

divides it and passes it through two parallel paths, 

enriching the semantic diversity of features (feature 

richness) before merging them again. However, the 

standard C2f treats all Feature Channels quite 

equally. In images of fires, channel 50 may carry vital 

information about the "color red," while channel 51 

may only carry "background noise." Treating the two 

channels equally is a waste of computational 

resources and confusion for the network. 

2.5. Research gap 

Most recent studies tend to "stack" complex units of 

attention (such as CBAM or Transformers) that add 

a computational load that may eliminate the speed 

advantage of YOLO. A few studies have examined 

the effect of modern geometric loss functions, such 

as (MPDIoU), on "variable-shaped" objects such as 

fire and smoke. The paper proposes to bridge this gap 

by introducing Fire-YOLO, where the demonstration 

of the integration of the Light Channel Attention 

mechanism specifically within the bottleneck (C2F) 

is the "golden combination" that outperforms more 

complex structures, while providing a rare critical 

analysis of the failure of rigorous engineering 

constraints in flame modeling. 

3. Proposed Methodology 

The challenge in detecting fires is not only to "see" 

the flame, but to "discern" it in the midst of 

overwhelming visual chaos. So, in this work, the 

Fire-YOLO model, a hybrid structure that integrates 

the response speed inherent in YOLOv8 with the 

perceptual depth of the "Channel Attention" 

mechanism. This model is designed to act as a "smart 

filter", passing important features (fire color, smoke 

texture) and suppressing noise (street lights, 

reflections), without sacrificing the computational 

efficiency needed for real-time applications. 

3.1. Core innovation: the proposed C2f-SE 

module: 

To solve the problem above, an integrated Squeeze-

and-Excitation (SE) block is immediately after the 

bottleneck in the C2F module. This light module does 

not add much load to the model (a slight increase in 

parameters), but it does give it a "self-awareness" of 

the importance of each channel. The process is 

carried out through three precise mathematical 

stages: 

First: Pressure (Squeeze - Global Information 

Embedding): Since convolution operates in a local 

space, the network lacks the vision of the full picture. 

Compress the spatial information for each (𝑐) 

channel via the Global Average Pooling (GAP) 

process. If the input (𝑢) with dimensions of 

(𝑐 × 𝐻 ×𝑊). It produces a descriptor of the (𝑧𝑐) 

channel as follows: 

𝑧𝑐 = 𝐹𝑠𝑞(𝑢𝑐) =
1

𝐻×𝑊
∑ ∑ 𝑢𝑐(𝑖, 𝑗)

𝑊
𝑗=1

𝐻
𝑖=1  (1) 

This process converts two-dimensional features into 

a single real value that expresses the "power 

distribution" in that channel. 

Second: Excitation - Adaptive Recalibration: 

Herein lies the magic. The use of a small neural 

network (two fully connected gates FC Layers) to 

learn the nonlinear relationships between channels. It 

aims to capture channel dependencies. The activation 

vector (𝑠) is calculated via the equation:  

𝑠 = 𝐹𝑒𝑥(𝑧,𝑊) = σ(𝑊2δ(𝑊1𝑧))   (2) 

Where: 

 𝜎: is the ReLU activation function (to ensure non-

linearity). 

 𝛿: is a sigmoid function (to convert values to a range 

[0, 1] to represent "weights of importance").  

𝑊1,𝑊2: are the weights of the connected layers, and 

act as a "bottleneck" to reduce complexity. 

 

Third: Scale - Reweighting 

Finally, use the resulting weights (𝑠𝑐) to reshape the 

original feature map. Important channels (which 

carry the features of fire or smoke) are amplified, and 

noise is suppressed: 

𝑥̌𝑐 = 𝐹𝑠𝑐𝑎𝑙𝑒(𝑢𝑐, 𝑠𝑐) = 𝑠𝑐 ⋅ 𝑢𝑐   (3) 

By integrating this mechanism into the C2F, then get 

the C2f-SE, a unit that is able to dynamically adapt to 

the content of the image, whether it's a massive forest 

fire accompanied by smoke plumes or a small candle 

flame. Figure 1 shows the proposed architecture. 

 
Figure 1: The Proposed Architecture Shows the 

C2f-SE Placement in the Yolo Backbone  

1.1. Loss Function Strategy: Why CIoU? 

(Loss Function Strategy) 

To quest for perfection, the loss function has been 

tested Minimum Point Distance IoU )MPDIoU( [29], 

which assumes that reducing the distance between the 

top and bottom corners of the squares gives a more 

precise positioning. However, the proposed 

methodology experiments (as shown in the results 

section) have proven that MPDIoU suffers from what 

is called "geometric over-rigidity" when dealing with 

non-rigid bodies. Fire has no sharp angles; it is a 

random mass. Trying to force the grid to align 

fictitious angles with micron precision led to training 

instability. So, they settle on the CIoU (Complete 
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IoU) function as an optimal option in the Fire-YOLO 

model [30]. CIoU takes into account three key factors 

in a balanced way: 

1. Overlap Area. 

2. Central Point Distance. 

3. Aspect Ratio.  

The CIoU equation is defined as follows: 

𝐿𝐶𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 +
ρ2(𝑏,𝑏𝑔𝑡)

𝑐2
+ α𝑣   (4) 

where (𝑣) measures the consistency of the aspect 

ratio, and (𝜌) is the Euclidean distance. This balance 

allowed the proposed model to focus on "containing" 

the fire within the square rather than obsessing with 

alignment of corners, resulting in faster convergence 

and more robust performance (Robustness). 

2. Experimental Setup 

The validity of any scientific conclusion lies in 

its reproducibility. In this section, a review of the 

software environment, hardware, and data that 

formed the "theater" of the proposed methodology 

experiments, to ensure complete transparency. 

2.1. Dataset Description  

A robust model needs robust data. For Fire-YOLO 

training, a custom dataset was built focused on fire 

ecological diversity. The collection consists of 8000 

images, carefully collected to include day and night 

scenarios, wildfires, urban fires, as well as difficult 

visual interference situations (such as fog and thick 

smoke). Data were broken down by a standard ratio: 

70% for training, 20% for validation, and 10% for 

testing[31]. The data were characterized with high 

accuracy for two main categories: "Fire" and 

"Smoke", to enable the model to understand the 

causal relationship between them. 

2.2. Training Environment  

All experiments were performed using the PyTorch 

framework on the Google Colab Pro platform. An 

NVIDIA Tesla T4 GPU with 16 GB VRAM was 

harnessed to ensure faster calculations. To ensure 

fairness of comparison, the Hyperparameters for all 

models have been standardized as shown in Table 1 

follows: 

Table 1: Standardized Hyperparameters to 

Identify the Conditions 
Hyperparameters description 

Number of epochs  50 epochs, which proved sufficient to 

reach the stage of convergence without 
entering into overfitting. 

Batch Size  16 

Optimizer AdamW with an Initial Learning Rate of 

0.001667, 
With a Momentum of 0.9, to ensure a 

stable update of weights.  

Image Size  640 × 640 pixels.  

Mosaic 
Augmentation 

 was activated in the first 40 eras to 
enhance the model's ability to detect 

small objects, and then discontinued in 

the last 10 epochs to allow the model to 
adjust its stability to natural images, a 

technique that has proven to be effective 

in improving positioning accuracy [32]. 

 

 

 

1.1. Evaluation Metrics 

Not only was abstract accuracy relied upon, but a 

comprehensive metric matrix was used according to 

COCO standards: 

1. (mAP@50-95): which is the standard that 

measures average accuracy across multiple IoU 

thresholds from 0.5 to 0.95. This scale is equivalent 

to models that locate the fire with high accuracy.  

2. Recall: In fire applications, a fire "miss" is 

considered a disaster, while a "false alarm" is just an 

inconvenience. So, the emphasis was on maximizing 

the value of the return to ensure safety.  

3. Inference Time: measured in milliseconds (ms), to 

ensure that the model is valid for real-time operation. 

 

2. Results and Discussion 

The experiences showed interesting results about 

the triumph of "smart simplification." The 

comparative performance of the five models was 

developed and tested under identical conditions. 

2.1. Quantitative Analysis: The Supremacy 

of the Hybrid Model  

To compare the results clearly, the results of the 

Ablation Study for five experiments were collected in 

Table 2, showing what was achieved during the same 

laboratory conditions of the models and the 

measurement of Loss Function, Pre-trained, 

Precision, Recall, mAP@50, and mAP@50-95. 

Table 2: Ablation Study Results Summary 

 

 

 

 

 

The proposed Fire-YOLO model has achieved the 

highest performance in all biometrics. Its 0.9% 

outperformance in mAP@50-95 and 1.6% in 

mAP@50 over the baseline may seem numerically 

simple, but in the world of object detection, this 

increase is considered a "net gain", especially since it 

was accompanied by an improvement in recall to 

0.78. This means that the model not only sees the fire 

more accurately, but also "misses" fewer fires, which 

is the most important standard in safety systems. 

 

2.2. Failure Analysis: Why Failed Models? 

(Failure Analysis)  

The YOLO-Inception experience is both a harsh and 

useful lesson. The drop in accuracy to 55.4% 

confirms the basic premise: the addition of multi-

scale filters in parallel (as Inception modules do) 

dispersed the network rather than enriched it. These 

units appear to have generated Feature Maps Noising 

that caused the network to lose the ability to discern 

the exact boundaries of the flames, raising the rate of 

false alarms insanely, as shown in Figure 2: 

Comparison of Models Showing Training Stability. 

Model Architecture Loss Function Pre-trained? Precision Recall mAP@50 mAP@50-95 

YOLOv8-Baseline Standard CIoU Yes 94.2% 77.7% 85.1% 

YOLO-From-Scratch YOLOv8 + C2f_SE CIoU No 94.8% 75.7% 83.2% 

YOLO-Fusion YOLOv8 + C2f_SE MPDIoU Yes 90.0% 72.0% 82.0% 

YOLO-Inception YOLOv8 + Inception CIoU Yes 89.5% 68.4% 79.5% 

Fire-YOLO (Ours) YOLOv8 + C2f_SE CIoU Yes 95.9% 78.0% 86.7% 
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Figure 2: Comparison of Models Showing 

Training Stability  

The YOLO-Fusion experiment (integrating SE with 

MPDIoU) revealed an interesting incompatibility. 

The MPDIoU function attempts to reduce the 

Euclidean distance between the corners of the  

 

 

 

squares, and since the fire is "fluid", forcing the grid 

to strict geometric positioning hindered the process 

of learning the chromatic features provided by the SE 

module. 

1.1. Visual & Confusion Matrix Analysis  

To understand the "behavior" of the models and not 

just their results, confusion matrices were analyzed. 

Figure 3: The Comparison of Confusion Matrices 

shows Fire-YOLO's ability to reduce false positives 

and separate fire categories from smoke more 

effectively than complex models.  

 

    
(a) YOLOv8-Baseline (b) YOLO-Fusion* (c) YOLO-Inception* (d) Fire-YOLO (Ours)* 

* (b) YOLO-Fusion (MPDIoU): (Fire/Smoke 

mixing errors appear). 

* (c) YOLO-Inception: (High Background errors 

appear - misplaced blue boxes).  

* (d) Fire-YOLO (Ours): (Very clean matrix, the 

main diameter is dark, and the rest of the fields are 

almost zero). 

Figure 3: Comparison of Confusion Matrices 

Distinction between fire and smoke: The proposed 

model, Fire-YOLO, has demonstrated superior 

disentanglement. The model recorded only 8 cases of 

misclassification between the fire and  

 

smoke categories. In contrast, other models 

(especially those using MPDIoU) experienced 

mixing cases of more than 100 cases. This success 

was attributed to the C2f-SE's "recalibration" 

mechanism, which allowed the network to learn that 

"flying gray" (smoke) is fundamentally different 

from "orange glow" (fire), even if they are located in 

the same spatial space. 

 Figure 4 shows examples of the accurate detection 

of the Fire-YOLO model, while the baseline model 

misses (false alarms) in fire and smoke detection . 

 

Figure 4: Examples of Miss Detection of Fire and Smoke by Baseline Model 
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Ghost Detections: In the Inception experiment, the 

model classified hundreds of backgrounds as fires. 

Fire-YOLO has maintained a very low False Positive 

rate, making it reliable for operating in open 

environments without causing unwarranted panic. 

1.1. The Cold Start Effect 

The From Scratch training experiment achieved a 

respectable accuracy (77.4%), demonstrating that the 

quality and richness of the dataset were collected. 

However, the gap (2.1%) between it and the model 

that used transfer learning confirms that the network's 

"prior experience" of seeing the world (via COCO 

weights) gives it a critical advantage in understanding 

complex edges and shapes, which cannot be easily 

compensated for by a limited number of training 

periods. 

1.2. Model complexity and inference speed  

In disaster management equations, time is not just 

money; time is life. A fire detection system that 

delays milliseconds could mean the difference 

between controlling a small spark and a catastrophic 

spread. Therefore, assessing the "agility" of a model 

is just as important as assessing its accuracy. In 

designing the Fire-YOLO, to break the traditional 

"Accuracy-Efficiency Trade-off" (Accuracy Trade-

off), where accuracy usually comes at the expense of 

speed. Table 3, The Comparison of Computational 

Efficiency and Speed of Implementation, highlights 

the "economics of performance" of the tested models. 

To assess the computational load, to measure three 

vital indicators:  

1. Number of parameters: to measure the required 

memory size.  

2. Floating Point Operations (GFLOPs): to measure 

theoretical computational complexity.  

3. FPS: to measure the actual speed on the Tesla T4 

gear, including pre-processing and post-processing 

time (NMS).  

Table 3: The Comparison of Computational 

Efficiency and Speed of Implementation 

 
* The term "ROI" (Return on Investment) 

1.1. Cost-Benefit Analysis 

The numbers reveal a striking engineering fact: the 

integration of C2f-SE modules added a "marginal" 

increase in the number of transactions estimated to be 

only 0.03 million coefficients, and a near-zero 

increase in GFLOPs. This is due to the ingenious 

design of the SE block; it reduces the spatial 

dimensions to (H × W) via global pooling before 

performing calculations, making its computational 

cost very minimal compared to standard wrap layers. 

In contrast, the model maintained an inference speed 

of 141 frames per second (FPS). In practice, this 

means that Fire-YOLO is capable of processing live 

video from 4 or 5 surveillance cameras 

simultaneously (real-time multi-stream) using a 

single mid-power graphics card. In stark contrast, the 

YOLO-Inception model has fallen into the trap of 

"arithmetic inflation." The addition of Parallel 

Branches almost doubled the inference time, 

dropping the speed to 80 FPS, with no significant 

improvement in accuracy (on the contrary, it 

decreased). 

1.2. Operational Conclusion 

This analysis proves that Fire-YOLO is not just an 

academic experiment, but a ready-made solution for 

industrial deployment. The slight increase in 

processing time (0.3 ms) is a very "small tax" for a 

quantum leap in excellence, accuracy, and smoke 

separation, making it an ideal candidate to work on 

embedded edge devices such as the NVIDIA Jetson 

Nano or Raspberry Pi 5 in the near future. 

2. Conclusion and Future Directions  

In the ongoing battle against wildfires and 

installations, the technical dilemma is not the 

"scarcity" of algorithms, but their "blindness" to the 

physical nature of fire. This research was based on the 

fundamental premise that treating fire as a solid 

object with fixed geometric boundaries is a 

methodological error, and that the solution lies in 

enhancing the network's "sensory awareness" rather 

than increasing its "muscle mass." Through the 

development of the Fire-YOLO model, it has been 

experimentally demonstrated that the integration of 

the Channel Attention Mechanism (C2f-SE) within 

the YOLOv8n architecture represents an ideal 

balance point between accuracy and efficiency. While 

the model achieved an accuracy of 79.5% mAP and a 

141 FPS inference speed, the most significant 

achievement was its superior ability to "visual 

disentanglement" between flames and smoke, 

ignoring the light distractions that have long confused 

traditional models. This study makes three important 

scientific contributions: 

Triumph of simplification: The prevailing idea that 

more complex structures (such as Inception) are 

always better has been refuted. It has been shown that 

architectural complexity can turn into "noise" when 

dealing with fluid objects. 

Critique of rigorous engineering: Detecting the 

inadequacies of precision-distance-dependent loss 

functions (MPDIoU) in modeling random shapes like 

fire, and reconsidering more holistic loss functions 

such as CIoU in this specific context. 

Industrial feasibility: A solution has been provided 

that does not stop at the laboratory limits, but has the 

technical elements to work immediately on existing 

monitoring systems without the need to upgrade 

equipment. 

3. Future Directions 

Despite the promising results, the way is still 

being paved for further exploration and development. 

In future upcoming works, I may plan to focus on the 

following axes: 

Model Quantization: Investigate the impact of 

converting model resolution from FP16 to INT8 

Model Parameters (M) GFLOPs Inference Time (ms) FPS mAP Gain vs. Cost 

YOLOv8n (Baseline)  3.01 8.19 6.8 ms ~147 Reference 

YOLO-Fusion 3.04 8.22 7.1 ms ~141 Low ROI* 

YOLO-Inception 4.15 11.5 12.4 ms ~80 Negative ROI 

Fire-YOLO (Ours)  3.04  8.22  7.1 ms  ~141  High ROI  
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using techniques such as TensorRT, to deploy it to 

very small, low-power UAVs. 

Multimodal Fusion: The fire may be hidden behind 

thick smoke that is invisible to the naked eye (or an 

RGB camera). Combining Thermal Imagery data 

with the current model could raise the level of 

detection to unprecedented degrees, especially on 

nights. 

Knowledge Distillation: Training a huge and 

complex "Teacher Model", and using it to teach the 

Student Model, to convey to it the "wisdom" of large 

networks without carrying their computational 

burden.  

Fire-YOLO is not just the end of academic research; 

it is a key building block towards a new generation of 

early warning systems that "understand" what they 

see, to be the first line of defense in protecting lives 

and property. 
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