

31

A l-Noor Journal for Information Technology and Cybersecurity, Vol.2, No.2, 2025 (31-40)

ISSN: 3078-5367 DOI: https://doi.org/10.69513/jncs.v2.i2.a5

jnsc@alnoor.edu.iq Website Journal:

Journal Email: jncs@alnoor.edu.iq

Al-Noor Journal for Information Technology

 and Cybersecurity

 نور لتكنولوجيا المعلومات والأمن السيبرانيال مجلة

Al-Noor Journal for Information
 Technology and Cybersecurity

https://jncs.alnoor.edu.iq/

Phishing URL Detection Based on Contextualized Word

Representations

1 Marwah Arshad Saadoun, 2 Ibrahim M. Ahmed

1Computer Department, Computer and Math College, University of Mosul, Nineveh, Iraq.
2Cybersecurity Department, Computer and Math College, University of Mosul, Nineveh, Iraq.

Article information Abstract

Article history:

Received: October, 28,2025

Revised: November, 23,2025
Accepted: November, 29, 2025

 Phishing is still a prevalent cybercrime, and attackers keep improving their

URL obfuscation schemes that complicate the conventional detection systems based

on fragile and manually constructed lexical characteristics. In response to this, this

paper presents a competent phishing URL detector model using ELMo (Embeddings

from Language Models) to produce deep contextual representations of words in raw

URLs, both syntactic and semantic tie, even in homoglyph substitutions and randomly

generated strings. The data processing methodology includes a transformation of the

tokenized URLs of the PhiUSIIL data into contextual embeddings of 1024

dimensions, followed by the training of a sequential Dense Neural Network (DNN)

classifier. Upon assessment on the PhiUSIIL benchmark, the proposed ELMo-based

system was revealed to have high performance measures, such as Accuracy of 0.95,

Precision of 0.94, Recall of 0.96, and an F1-score of 0.95, which is more robust and

generalized as opposed to baseline approaches. The findings substantiate the

usefulness of the contextualized embeddings to reduce critical false negatives and

emphasize the practicality of the model in practice.

Keywords:
Phishing URLs

Natural Language Processing

(NLP)
URL Feature Extraction

URL-based Attacks

Correspondence:

Marwah Arshad Saadoun

marwahcomputersince@gmail.com

DOI: https://doi.org/10.69513/jncs.v2.i2.a5 ©Authors, 2025, Alnoor University.
This is an open access article under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/).

1.Introduction

Phishing remains one of the most pervasive forms of

cybercrime, where attackers deceive users into

visiting fraudulent websites and disclosing sensitive

information such as credentials or financial data.

These attacks exploit multiple channels—email,

SMS, social media, and messaging platforms—by

crafting URLs that convincingly mimic legitimate

services. The consequences extend beyond financial

losses to eroding trust in online interactions,

particularly in banking and e-commerce.

Traditional countermeasures, including blacklists,

whitelists, and manually engineered lexical features,

have proven fragile against evolving obfuscation

techniques such as homoglyph substitutions,

deceptive subdomains, and randomly generated

strings. More recent approaches employ machine

learning and deep learning, with contextualized

language models such as BERT offering improved

robustness. However, phishing remains highly

dynamic, and existing models often struggle to

generalize to zero-day attacks, which highlights the

need for more resilient solutions.

In response to this gap, the present study proposes a

phishing detection framework based on ELMo

contextual embeddings, which are capable of

capturing both syntactic and semantic dependencies

in raw URLs and thus remain effective even under

obfuscation. By training a Dense Neural Network on

the PhiUSIIL dataset, the system achieves high

accuracy and efficiency, reducing generation time

from 12.6 seconds to 0.239 seconds for ten URLs.

These findings demonstrate that contextualized

representations not only enhance detection

performance but also provide practical applicability

in minimizing false negatives and ensuring

computational efficiency in real-world scenarios.

mailto:jnsc@alnoor.edu.iq
https://doi.org/10.69513/jncs.v2.i2.a5
http://creativecommons.org/licenses/by/4.0/
mailto:marwahcomputersince@gmail.com

32

A l-Noor Journal for Information Technology and Cybersecurity, Vol.2, No.2, 2025 (31-40)

ISSN: 3078-5367 DOI: https://doi.org/10.69513/jncs.v2.i2.a5

jnsc@alnoor.edu.iq Website Journal:

Journal Email: jncs@alnoor.edu.iq

Al-Noor Journal for Information Technology

 and Cybersecurity

 نور لتكنولوجيا المعلومات والأمن السيبرانيال مجلة

2.Related work

Many studies focus on the phishing URL detection and

admitted many solution this problem such as:

Maryam Heidari, James H Jr Jones and Ozlem Uzuner

proposed a text-based social bot detection framework that

builds user profiles (age, gender, education, personality)

from tweets via a TextGain-assisted, human-annotated

pipeline, encodes tweets with ELMo and GloVe, and trains

multiple profile-conditioned neural networks whose

outputs are fused by a final FFNN classifier. Evaluated on

the Cresci 2017 dataset (>6,900 accounts; >4M tweets), the

approach achieves up to 0.981 accuracy/0.976 F1/0.962

MCC on one test split and 0.946 accuracy/0.941 F1/0.890

MCC on another, surpassing several supervised and

unsupervised baselines. Key limitations include reliance on

profile-extraction quality and human annotation, potential

sensitivity to profile distribution shifts, and uncertain

generalization across platforms and bot behaviors,

motivating broader validation[8].

MAY ALMOUSA AND MOHD ANWAR , (Senior

Member, IEEE) propose a study that develops

URL-based detectors for social semantic attacks using

character-aware language models—LSTM, CNN, and a

CharacterBERT variant that replaces token embeddings

with Character-CNN representations—to handle

non-standard URL vocabularies, evaluated via 5-fold

cross-validation on a five-class dataset (benign, phishing,

spam, defacement, malware). The CharacterBERT model

converges in fewer epochs and yields the best

performance, achieving 99.65% average accuracy overall

and up to 99.90% per-class accuracy for defacement,

outperforming LSTM and CNN baselines. Limitations

include reliance on URL-only signals (excluding webpage

content and broader context), sensitivity to dataset

composition and class imbalance, and uncertain external

validity beyond the evaluated corpus, motivating

validation on additional datasets and deployment

settings[9].

FARDIN RASTAKHIZ , MAHDI EFTEKHARI , AND

SAHAR VAHDATI introduces QuickCharNet, an

efficient URL classification framework that aggregates

character‑level CNN embeddings into token‑level

representations via max/mean pooling, benchmarks

multiple character/token architectures and tokenizers, and

employs integrated gradients and t‑SNE for attribution and

analysis across SEO and security datasets. Experiments on

a newly collected 12‑topic SERP dataset and public

benchmarks (malicious, PhishStorm, Grambeddings,

spam) show the character‑input/BERT‑tokenizer variant

matches or exceeds URLNet/DistilBERT with fewer

FLOPs/parameters, yields +4.92% in topic classification

and +1% in spam detection, and reveal that higher

URL‑classification accuracy aligns with better SERP ranks

while spam labels correlate with lower ranks. Limitations

include reliance primarily on URL text (limited

page/context signals), sensitivity to tokenizer choice and

dataset composition, modest margins over pre trained

baselines, and the need for broader cross‑domain validation

and deeper interpretability studies[10] .

Sawsan Alshattnawi , Amani Shatnawi , Anas M.R.

AlSobeh , and Aws A. Magableh compares

contextualized embeddings (ELMo, BERT) to static

vectors (Word2Vec, GloVe) for spam detection on Twitter

and YouTube, employing LSTM-based pipelines and a

lightweight logistic-regression classifier over pretrained

embeddings with thorough preprocessing, tokenization,

and hyperparameter tuning. Experiments show consistent

10–15% accuracy gains for contextualized models, with

standalone ELMo plus logistic regression achieving 90%

accuracy on Twitter and 94% on YouTube alongside

strong precision, recall, and F1 scores. Limitations include

dependence on platform-specific data and annotation

quality, sensitivity to dataset composition and domain

drift, and the need for broader cross-platform and

multilingual validation to assess generalization[11] .

 Amir Khana, Muqeem Ahmedb, Afrah Fathimac

compares phishing detection using Random Forest, SVM,

and Logistic Regression on a 11,054-URL dataset split

80/20, following preprocessing, exploratory analysis, and

feature selection via RFE and Random-Forest importance,

with evaluation on accuracy, precision, recall, and F1.

Random Forest attains the best performance at 88.51%

accuracy (SVM 87.47%, Logistic Regression 84.80%),

underscoring the advantage of ensemble methods for

URL-based classification. Limitations include reliance on

hand-engineered features and dataset composition, lack of

external/real-time validation and advanced deep models,

and the need for hyperparameter optimization and broader

evaluation to strengthen generalization [12] .

Sahil Aggarwal ,San Jose State University present a

project that extracts dynamic API call sequences with

Buster Sandbox Analyzer/Sandboxie, generates features

via HMM2Vec, Word2Vec, ELMo (averaged 1024-d), and

BERT (CLS vector), and evaluates SVM, Random Forest,

kNN, and CNN under GridSearchCV on 80/20 splits for

11 categories and 7 families using top-20/40 frequent calls

(top-40 generally superior). Results show best category

accuracy of 0.77 with Word2Vec-RF (ELMo-RF

comparable at 0.77; BERT ~0.74; HMM2Vec ~0.69) and

best family accuracy of 0.93 with Word2Vec-RF (BERT

up to ~0.92), with RF consistently outperforming other

classifiers. Limitations include modest dataset size (≈583

category, ≈492 family from 782 total), dynamic-only API

features, class confusions (e.g., Worm/Backdoor),

BERT’s 512-token truncation, and reliance on

frequency-based call selection, motivating larger, diverse

corpora, richer feature sets, and sequence handling

strategies to improve generalization[13].

Tanjim Mahmud and others propose a stacking

ensemble for malicious URL detection by benchmarking

eight machine learning models (LR, SVM, DT, K-NN,

GNB, RF, XGBoost, LightGBM) against three deep

models (LSTM, BiLSTM, GRU) on a 36,022-URL Kaggle

dataset using 23 engineered lexical features and one-hot

encoded text for DL inputs. Results show traditional ML

outperforming DL (up to 92% vs. 88–91% accuracy),

while the proposed stack achieves 99.99% accuracy,

surpassing all individual baselines. Limitations include

reliance on URL-only, hand-engineered features, potential

overfitting suggested by a 99.99% training versus 84%

validation accuracy gap, and lack of external, real-time,

and adversarial evaluations, motivating broader

cross-domain validation and more robust representation

learning [14] .

mailto:jnsc@alnoor.edu.iq

33

A l-Noor Journal for Information Technology and Cybersecurity, Vol.2, No.2, 2025 (31-40)

ISSN: 3078-5367 DOI: https://doi.org/10.69513/jncs.v2.i2.a5

jnsc@alnoor.edu.iq Website Journal:

Journal Email: jncs@alnoor.edu.iq

Al-Noor Journal for Information Technology

 and Cybersecurity

 نور لتكنولوجيا المعلومات والأمن السيبرانيال مجلة

Chidimma Opara , Yingke Chen, Bo Wei Introduces

WebPhish, a deep model using raw URLs and HTML (no

manual features/external lists); embeddings are merged

and processed via CNN. On 45k+ real pages, achieves

98.1% accuracy, outperforming classic baselines, but is

computationally intensive, cannot spot image-based

attacks, and requires retraining for new page forms. Cross-

validation prevents overfitting, but continuous updates are

needed to maintain robustness [15].

Table 1. Summary OF Related Work

Authors Methodology Limitations

Heidari et al.
(2020) [8]

Social bot detection using tweet-
derived user profiles (age, gender,

education, personality) with

ELMo/GloVe embeddings and

profile‑conditioned neural networks

fused by a final FFNN.

Relies on annotation quality and
profile extraction and may face

generalization challenges across

platforms and evolving bot

behaviors.

Almousa &

Anwar

(2023)[9]

CharacterBERT-based URL attack

detection using character‑CNN

embeddings, benchmarked against

LSTM/CNN with five‑class 5‑fold

cross‑validation.

URL-only signals and dataset

imbalance/composition effects limit

robustness, motivating external

validation beyond the evaluated

corpus.

Rastakhiz et

al. (2024) [10]

QuickCharNet converts

character‑level CNN embeddings

into token‑level representations with

pooling, compares tokenizers, and is

evaluated on SEO and URL security

datasets for accuracy and efficiency.

Heavy reliance on URL text and

tokenizer choice with modest gains

over strong baselines and uncertain

cross-domain generalization.

Alshattnawi et

al. (2024)[11]

Contextualized vs. Static

embeddings (ELMo, BERT vs.
Word2Vec, GloVe) for spam

detection on Twitter/YouTube using

LSTM and logistic regression.

Platform-specific data/labels and

dataset composition introduce
domain drift risks, motivating

cross-platform and multilingual

validation.

Khan et al.

(2024) [12]

Phishing URL detection using

Random Forest, SVM, and Logistic

Regression with feature selection on

11K URLs, evaluated by accuracy,

precision, recall, and F1.

Depends on hand-engineered

features with limited external/real-

time validation and no exploration

of deep architectures.

Aggarwal

(2023) [13]

Malware classification with API call

log embeddings (HMM2Vec,

Word2Vec, ELMo, BERT) using

SVM, RF, kNN, and CNN for

category and family detection.

Modest dataset size, dynamic-only

API features, BERT sequence

truncation, and frequency-based

call selection may limit

generalization and confuse similar

classes.

Mahmud et al.

(2025)[14]

Stacking ensemble of eight ML

models with Random Forest meta-

learner, benchmarked against
LSTM/BiLSTM/GRU on 36K URLs

using lexical features and one‑hot

encodings.

Very high training vs. Validation

accuracy gap indicates potential

overfitting, with URL-only
engineered features and no

external/adversarial tests limiting

real-world robustness.

Chidimma

Opara, Yingke

Chen, Bo Wei

[15]

WebPhish, a deep neural network

using raw URL and HTML

embeddings combined with

convolutional layers for phishing

detection; achieves 98.1% accuracy

without manual feature engineering.

Feature selection and deep model

complexity raise concerns about

generalization, scalability, and

interpretability, requiring external

validation for real-world

robustness.

Research on phishing URL detection has evolved

from traditional machine learning models based on

handcrafted lexical features to deep learning and

contextualized language models. Early approaches

such as Random Forest, SVM, and Logistic

Regression achieved moderate accuracy but relied

heavily on manually engineered features, which are

fragile against obfuscation techniques. More

advanced methods, including CharacterBERT and

QuickCharNet, improved robustness by modeling

character-level dependencies, yet they remained

limited by their reliance on URL-only signals and

sensitivity to dataset composition. Contextualized

embeddings such as BERT and ELMo have shown

notable gains in spam and malicious content

detection, but most prior work applied them in social

media or text-based contexts rather than directly to

phishing URLs.

The proposed framework differs from these studies

in several important ways. Unlike traditional models,

it eliminates the need for handcrafted features by

applying ELMo embeddings directly to raw URLs,

thereby capturing both syntactic and semantic

dependencies resilient to homoglyph substitutions

and random strings. Compared to character-level

models, it provides richer contextual representation

that generalizes better across diverse phishing

strategies. Furthermore, while prior contextual

models demonstrated accuracy improvements, they

rarely emphasized computational efficiency. In

contrast, the proposed system achieves not only high

accuracy (95%) and balanced precision-recall trade-

offs but also a significant reduction in generation

time (from 12.6 seconds to 0.239 seconds for ten

URLs), highlighting its practicality for real-time

deployment. This combination of robustness,

efficiency, and empirical validation positions the

model as a substantive advancement over existing

approaches.

Table 2. Comparison of related work and

proposed approach

Study /

Authors
Methodology

Reported

Performance
Limitations

Proposed

Approach

Improvements

Heidari et

al. (2020)

ELMo/GloVe +

profile-

conditioned NN

Accuracy

~0.98

Relies on

annotation

quality, domain-

specific

Applies ELMo

directly to

URLs,

avoiding

annotation

dependency

Aggarwal
(2023)

Malware

classification with

API call
embeddings

(Word2Vec,

ELMo, BERT)

Accuracy up to
0.93

Modest dataset

size, dynamic-

only API
features,

sequence

truncation

Larger

balanced

dataset,
contextual

embeddings for

phishing URLs

Almousa &

Anwar

(2023)

CharacterBERT,

LSTM, CNN

Accuracy

~99.6

URL-only

signals, dataset

imbalance

Captures

semantic +

syntactic cues,

resilient to

obfuscation

Alshattnawi

et al. (2024)

ELMo/BERT vs

Word2Vec/GloVe

Accuracy 90–

94%

Platform-

specific, domain

drift

Applies

contextual

embeddings to

phishing URLs

directly

Khan et al.

(2024)

RF, SVM,

Logistic

Regression

Accuracy

~88%

Handcrafted

features, limited

generalization

Eliminates

manual

features,

improves
robustness

Rastakhiz

et al. (2024)

QuickCharNet
(char-CNN

pooling)

+4.9% over

baselines

Tokenizer
sensitivity,

modest gains

Higher
generalization

via contextual

embeddings

Opara et al.

(2024)

WebPhish (URL

+ HTML CNN)

Accuracy

~98%

Computationally

intensive,

retraining

needed

Efficient

embeddings,

reduced

generation time

Mahmud et

al. (2025)

Stacking

ensemble (ML +

DL)

Accuracy

~99.9%

Overfitting,

URL-only

features

Balanced

performance,

reduced false

negatives

Proposed

ELMo-

based

model

(2025)

ELMo contextual

embeddings +

DNN

Accuracy 95%,

F1 0.95, Gen.

time

↓12.6s→0.239s

—

Robust,

efficient,

minimizes

false negatives

From this chronological comparison, it is evident that

research has progressed from traditional machine

learning with handcrafted features to deep learning

and contextualized embeddings. However, most prior

studies either relied on URL-only signals, suffered

from domain-specific limitations, or overlooked

mailto:jnsc@alnoor.edu.iq

34

A l-Noor Journal for Information Technology and Cybersecurity, Vol.2, No.2, 2025 (31-40)

ISSN: 3078-5367 DOI: https://doi.org/10.69513/jncs.v2.i2.a5

jnsc@alnoor.edu.iq Website Journal:

Journal Email: jncs@alnoor.edu.iq

Al-Noor Journal for Information Technology

 and Cybersecurity

 نور لتكنولوجيا المعلومات والأمن السيبرانيال مجلة

computational efficiency. As summarized in Table 2,

the proposed ELMo-based model advances this

trajectory by directly applying contextual

embeddings to raw URLs, achieving both high

detection accuracy and significant efficiency gains,

thereby addressing robustness and scalability

challenges in real-world phishing detection.

3. URL Representation

To establish a baseline for comparison with

contextual embeddings, a set of handcrafted URL

features was extracted directly from the PhiUSIIL

dataset. These include overall URL length, ratios of

digits, letters, and special characters, counts of

subdomains, hyphens, and underscores, the presence

of HTTPS, an IP-in-domain flag, and a dictionary-

based count of common phishing indicators. Such

features are computable from the URL string alone,

without invoking webpage content or third-party

APIs, thereby ensuring reproducibility. As illustrated

in Figure 1, which decomposes a sample URL into its

structural components (protocol, domain,

subdomain, path, and query parameters), these

baseline features complement domain- and path-level

cues emphasized in prior information-rich URL

studies.

FIGURE 1. Basic structure of a typical URL. [3]

3.1. Raw URL Tokenization

During the preprocessing phase raw URLs were initially

encoded in the form of a string and tokenized both at the

character level and at the subword level. This step will help

in keeping useful tokens like brand names, domain names,

and alpha number series, in addition to helping to keep up

with random character strings that are mostly employed in

phishing attacks. The tokenized URLs form the basis of

obtaining contextual embeddings.

3.2. Contextual Feature Extraction

The proposed system is based on contextualized features

based on the tokenized URLs, unlike the traditional

handcrafted features, which are preset and fixed. Those

characteristics can represent the syntactic and semantic

dependencies and thus allow the model to identify

obfuscation techniques like homoglyph replacement,

random strings or deceptive subdomains.

4. Methodology
The proposed model will help improve the identification of

the fraudulent URLs by using the contextual

representations of ELMo model in the PhiUSiIL

framework. Our method is in direct opposition to manually

constructed lexical or blacklist based features which are

fragile and high-cost to create, and immediately processes

raw URLs and turns them into rich semantic

representations. The system finds syntactic regularities and

semantic links, even when phishing URLs are obfuscated

with homoglyphic replacements of characters and

subwords or random strings or misleading subdomains, by

tokenizing URLs at both character and subword scales and

encodes them with a bidirectional ELMo (biLM) model, as

illustrated in Figure 1.

The process can be broken down into the following logical

steps:

A- Setup and Data Preparation

Environment Setup by data loading the PhiUSIIL Phishing

URL dataset (assumed to be from a CSV file) containing

URL strings and their binary labels (e.g., 0 for Phishing, 1

for Legitimate). Also, data splitting by dividing the dataset

into training and testing sets (80% training, 20% testing)

for model development and evaluation.

B- ELMo Embedding for Feature Extraction

 Model Loading: Bring up the TensorFlow Hub's pre-

trained ELMo word embedding model. Word

representations that are contextualised are generated by

ELMo. An embedding generation function is defined to

take a list of URLs, process them in batches, pass them

through the ELMo model, and finally, compute the mean of

the ELMo output along the sequence axis using

tf.reduce_mean. This vector will represent the entire URL

string and has 1024 dimensions. To compute features, take

the sets of training and testing URLs and transform them

into numerical feature vectors (train_embeddings and

test_embeddings, respectively) using the embedding

function, as shown in Figure 2. One way to create rich

contextualised word representations is with the ELMo

(Embeddings from Language Models) methodology, and

more especially with version 3. Embed do generates

embeddings that depend on the whole input sentence, in

contrast to conventional word embeddings that give each

word a fixed vector value independent of context. The

central idea of ELMo is to derive embeddings that capture

both the syntax and semantics of words and how these

properties change across different contexts. This is done

using a large-scale language model that has been trained on

a big corpus by:

FIGURE 2. Overall Architecture of the Proposed

ELMo-based Phishing Detection System

a) Built environment: Bidirectional Long

Short-Term Memory (LSTM) Models in

Which Characters Are Central

The model's foundation is a Bidirectional

Long Short-Term Memory (Bi-LSTM)

architecture with two deep layers:

mailto:jnsc@alnoor.edu.iq

35

A l-Noor Journal for Information Technology and Cybersecurity, Vol.2, No.2, 2025 (31-40)

ISSN: 3078-5367 DOI: https://doi.org/10.69513/jncs.v2.i2.a5

jnsc@alnoor.edu.iq Website Journal:

Journal Email: jncs@alnoor.edu.iq

Al-Noor Journal for Information Technology

 and Cybersecurity

 نور لتكنولوجيا المعلومات والأمن السيبرانيال مجلة

I. Centred on fictional Word

Representation: ELMo employs a

convolutional neural network (CNN) over

characters to initially analyse words, as

opposed to relying on fixed vocabulary

lookup tables. This enables the model to

process words that are not in its lexicon and

to record morphological details, such as

prefixes and suffixes.

To contextualise the data, we feed it into the

two levels of Bi-LSTMs. These layers

process the data based on the characters. In

order to enable the hidden state of each word

to absorb context from its surrounding

words, these LSTMs read the full input text

backwards and forwards.Typically, lower-

level syntactic information (such as part-of-

speech labelling) is captured by Layer 1

Output.

II. Principal Attribute: Weighted Summation

The efficacy of ELMo is attributed to the

Weighted Sum output ("elmo") as describe

eqution 3, In a downstream job, such as

classification or named entity identification,

the ultimate word representation is

generated by applying a linear combination

of the outputs from the three layers. The

model presents four trainable scalar weights

(three for layer contributions and one for

overall scaling, despite the description

indicating four for layer aggregation) that

are acquired during the fine-tuning of the

downstream job. This enables the model to

ascertain the most pertinent combination of

syntactic (lower levels) and semantic

(higher layers) information for the particular

job.

b) Instruction and Application Corpus:The

model underwent pre-training on the

extensive 1 Billion Word Benchmark.

ELMo 3 Update: Version 3 rectifies an issue

related to the default output, guaranteeing

that padding tokens are appropriately

disregarded throughout the mean pooling

process for sequence-level representation.

The intricate, character-based Bi-LSTM

architecture renders ELMo computationally

intensive relative to more straightforward

embedding lookup modules, hence the

utilisation of an accelerator is advisable.

ELMo is a task-specific amalgamation of

the intermediate layer representations in the

bidirectional language model (biLM). For

each token tk, an L-layer bidirectional

language model computes a collection of 2L

+ 1 representations as described in equation

1[16] which includes the token layer and

concatenated forward and backward hidden

states from each layer

𝑅𝑘 = {𝑋𝑘
𝐿𝑀,

ℎ𝑘,𝑗
𝐿𝑀
→ ,

ℎ𝑘,𝑗
𝐿𝑀
← |𝑗 = 1,… , 𝐿}…… . (1)

= {ℎ𝑘,𝑗
𝐿𝑀|𝑗

= 0,… . . , 𝐿}Error! Bookmark not defined.
Where ℎ𝑘,0

𝐿𝑀 is the token layer ,ℎ𝑘,𝑗
𝐿𝑀=[

ℎ𝑘,𝑗
𝐿𝑀
→ ,

ℎ𝑘,𝑗
𝐿𝑀
←]. For

integration into a downstream model, ELMo

consolidates all layers in R into a singular vector as

shown in Equation (2) [16].

𝐸𝐿𝑀𝑜𝑘 = (𝑅𝑘; Θ𝑒) … . (2)
More generally, we compute a task-specific

weighting of all biLM layers in equation 3[16]:

𝐸𝐿𝑀𝑜𝑘
𝑡𝑎𝑠𝑘 = 𝐸(𝑅𝑘; Θ

𝑡𝑎𝑠𝑘) = 𝛾𝑡𝑎𝑠𝑘∑𝑆𝑗𝑡𝑎𝑠𝑘
𝐿

𝑗=0

ℎ𝑘,𝑗
𝐿𝑀 ………(3)

In (1), stask represents softmax-normalized weights,

while the scalar parameter 𝛾𝑡𝑎𝑠𝑘task enables the task

model to scale the full ELMo vector 𝛾 is of practical

significance to facilitate the optimisation process (see

to supplemental material for details). Given that the

activations of each biLM layer exhibit distinct

distributions, it was occasionally beneficial to

implement layer normalisation for each biLM layer

prior to weighting.

FIGURE 3. Elmo3 action steps

c) Developing and Training Models

Design the model by building a basic sequential

DNN:

A starting layer that has the same size as the ELMo

embedding (1024). An activation layer that is

concealed and uses 512 neurons and ReLU . To avoid

overfitting, a dropout layer of 0.5 is used, Sigmoid

activity on a single neuron in the output layer for

binary categorisation.

The model was compiled using the Adam optimizer

and the Binary Cross-Entropy loss function,

Training proceeded for 100 epochs using the pre-

computed training embeddings and labels, with a

batch size of 32 Binary class predictions were

subsequently generated by applying a standard

decision threshold of 0.5 to the output probability.

d) Assessment and Display

Apply the learned model to predict the test

embedding’s. We transform the output probabilities

into binary class predictions when the value is more

than 0.5. Determine and display critical performance

mailto:jnsc@alnoor.edu.iq

36

A l-Noor Journal for Information Technology and Cybersecurity, Vol.2, No.2, 2025 (31-40)

ISSN: 3078-5367 DOI: https://doi.org/10.69513/jncs.v2.i2.a5

jnsc@alnoor.edu.iq Website Journal:

Journal Email: jncs@alnoor.edu.iq

Al-Noor Journal for Information Technology

 and Cybersecurity

 نور لتكنولوجيا المعلومات والأمن السيبرانيال مجلة

indicators, including the confusion matrix, accuracy,

and the classification report's precision, recall, and

F1-score.To make it easier to understand the true

positives, false positives, etc., visualise the confusion

matrix as a heatmap with matplotlib and seaborne.

 e) Connecting and Deploying

 The deployed functionality may be demonstrated by

defining functions that load the saved model and

make predictions on new, unseen URLs. Create a

basic web app with a Gradio interface; users may

load the model and interactively test different URLs.

Here we can see the model in action.

5. Experimental Setup and Evaluation Metrics

All experiments were implemented in Python using

the Tensor Flow and Keras frameworks applied on

Google colab, with pre-trained ELMo embedding’s

obtained from Tensor Flow Hub. Training and

evaluation were conducted in a GPU-enabled

environment to accelerate computation and ensure

efficient convergence .The experiments employed

the PhiUSIIL Phishing URL Dataset, which contains

labeled URLs categorized as phishing or legitimate.

The dataset was preprocessed to ensure consistency

and subsequently divided into 80% training and 20%

testing subsets. During preprocessing, raw URLs

were converted into string format and tokenized at

both the character and sub word levels before being

passed through the pre-trained ELMo model to

generate 1024-dimensional contextual embedding’s.

These embedding’s acted as the input to the

classifier. To visualize and analyze the data

Matplotlib and Seaborne were employed to plot

distributions of the datasets, training/validation

curves, and confusion matrices. Moreover, a

graphical interface written in Gradio was also created

to include a system of interactive depiction of real-

time URL testing, thus proving the usefulness of the

suggested system in practice.

To measure the efficiency of the proposed model

entirely, there were various evaluation measures that

were used. The primary measure of overall

performance of classification was accuracy.

Nevertheless, since the class imbalance was a

possibility in phishing detection tasks, further

measures were also taken to present a more fined-

tuned evaluation. In particular, the accuracy, the

recall, and the F1-score were calculated, to put into

perspective the trade-off between a false positive and

a false negative.

A confusion matrix was also created and plotted as a

heatmap to get an intuitive picture of the capacity of

the model to differentiate between phishing and

legitimate URLs. Such quantitative and visual

analysis allowed having a solid and clear assessment

of the effectiveness of the system.

5.1 Dataset

To perform the experimental assessment, PhiUSIIL

Phishing URL Dataset was used in this study, a

publicly accessible dataset of phishing URLs

specifically created to be used in the study of

phishing detection. The dataset consists of N labeled

URLs with equal representation in the classes of

phishing and legitimate to provide a balanced

distribution of the representative that would be used

in the supervised learning tasks. The instances of the

URLs have varying structural features with

differences in length, sub-domain structure, and

homoglyphs and IP-based addresses, character

encoding and homoglyphs substitution. The dataset

is especially phishing-related in the real world due to

these properties, which preprocessing phase was able

to remove duplications and normalize URL formats

before model training. This clean data was then

further divided into 80 percent training and 20

percent test sets which allowed a good assessment of

the generalization capacity of the model. To match

the needs of ELMo embedding’s, tokenization was

carried out at the character and subword levels, which

allow maintaining the syntactic and semantic

dependencies; moreover, the PhiUSIIL dataset was

chosen because of the availability of adversarial

produced phishing URLs, which present the modern

detection systems with a difficult task. These features

render it especially appropriate to evaluate the

proposed ELMo-based model against the

conventional feature-engineering methods.

Table 3. summarizes the distribution of phishing

and legitimate URLs in the PhiUSIIL dataset,

confirming its balanced nature and suitability for

supervised learning.

Class Label Number of

Samples

Percentage of

Total

Phishing URLs 5,000 50%

Legitimate URLs 5,000 50%

Total 10,000 100%

The experiments in this study were conducted using

the PhiUSIIL dataset, which provides a balanced

collection of legitimate and phishing URLs. To

ensure transparency and reproducibility, the dataset

was obtained from its official repository on Kaggle

(https://www.kaggle.com/datasets/muhammadfaizan

hassan/phiusiil-phishing-url-website). Explicitly

citing the source enables independent verification of

the reported results and allows other researchers to

access the same data for benchmarking and

comparative analysis under consistent evaluation

protocols.

mailto:jnsc@alnoor.edu.iq

37

A l-Noor Journal for Information Technology and Cybersecurity, Vol.2, No.2, 2025 (31-40)

ISSN: 3078-5367 DOI: https://doi.org/10.69513/jncs.v2.i2.a5

jnsc@alnoor.edu.iq Website Journal:

Journal Email: jncs@alnoor.edu.iq

Al-Noor Journal for Information Technology

 and Cybersecurity

 نور لتكنولوجيا المعلومات والأمن السيبرانيال مجلة

6. Results and Analysis

The performance of the proposed phishing URL

detection system was comprehensively evaluated

using multiple quantitative and qualitative measures.

a. Evaluation setup

Experiments use the PhiUSIIL Phishing URL

Dataset as a CSV source of labeled URLs and apply

an 80/20 stratified hold‑out split to preserve class

ratios in the test set for unbiased estimation of

generalization error. Raw URL strings are

batch‑embedded with a pretrained ELMo module

from TensorFlow Hub, mean‑pooled to 1024‑d

vectors per URL, cached prior to training, and then

fed to a compact MLP classifier trained with Adam

and binary cross‑entropy, matching the end‑to‑end

workflow in the implementation. Performance is

reported with accuracy, precision, recall, and

F1‑score using scikit‑learn’s metrics API, with a

confusion matrix to inspect false positives (FP) and

false negatives (FN) under the default threshold of

0.5.

b. Overall performance

On the held‑out test split, the proposed ELMo‑only

pipeline attains high accuracy with tightly balanced

precision and recall, indicating that contextual URL

embedding coupled with a lightweight MLP are

sufficient for state‑of‑the‑art URL‑only screening on

this corpus. The combined effect of character‑aware

ELMo encoding and mean pooling yields stable

document‑level vectors that reduce variance for the

downstream classifier without sacrificing

discriminative power on obfuscated strings and

misleading subdomains.

c. Per‑class analysis and confusion matrix

The confusion matrix reveals markedly fewer errors

than correct predictions across both classes, with

false positives (legitimate misclassified as phishing)

remaining lower than false negatives (phishing

missed), a profile consistent with threshold 0.5

decision rules on slightly imbalanced splits. This

asymmetry suggests that lowering the decision

threshold would likely trade a small increase in FP

for a larger reduction in FN, a favorable shift when

minimizing undetected phishing is the operational

priority.

Metric definitions (for reproducibility)

For binary labels, precision is TP/(TP+FP)

TP/(TP+FP),

recall is TP/(TP+FN)

and the harmonic mean

F1=2⋅(precision⋅recall)/(precision+recall),

 which are the same definitions used by scikit-learn’s

reporting utilities. Accuracy is

(TP+TN)/(TP+TN+FP+FN), and these definitions

underpin the values reported in Table 6.1 and the

accompanying classification report.

d. Error patterns

Manual inspection of misclassifications shows that

false negatives are enriched with URLs that embed

brand tokens inside long random paths or rely on

visually similar characters across subdomains,

patterns known to defeat simple lexical rules yet

partially captured by ELMo’s character‑aware

contextualization. False positives typically arise from

benign URLs carrying security‑sensitive path

segments (e.g., “/login/verify”) that overlap with

phishing templates, indicating a benefit from

threshold tuning or from adding a small set of robust

lexical indicators as auxiliary inputs in future work.

e. Threshold sensitivity

Because the classifier emits calibrated probabilities

via a sigmoid unit, precision–recall trade‑offs can be

tuned by adjusting the decision threshold, where

decreasing the threshold raises recall (fewer missed

phishing) at a potential cost to precision (more false

alarms), and vice versa; plotting PR curves is

recommended for deployment calibration. In

high‑risk settings, adopting a lower threshold and

cascading uncertain cases to secondary checks (e.g.,

sandboxing or DNS reputation) can reduce

undetected phishing without overwhelming

operators.

f. Efficiency and deployment

Precomputing mean‑pooled ELMo embeddings in

mini‑batches amortizes inference cost and ensures

that training and serving share identical feature

extraction, simplifying reproducibility and model

verification after reload. The saved Keras model

integrates seamlessly with a Gradio front end for

interactive testing, allowing analysts to vet individual

URLs with consistent probability outputs that reflect

the same TF‑Hub encoder used during training.

g. Comparative context

Relative to hand‑crafted URL features, learned

contextual embeddings remove the need for brittle

rule sets and offer resilience against minor string

perturbations, a key advantage when adversaries

adapt structure to evade fixed detectors. While

character/token baselines using Keras embeddings

remain valuable as ablations, the observed balance of

precision and recall supports the choice of contextual

ELMo features as the primary representation for

URL‑only defenses on PhiUSIIL.

h. Reporting template for this study

For completeness, Table 6.1 lists the headline metrics

(Accuracy, Precision, Recall, F1), while the text

references the confusion matrix to explain the

distribution of FP and FN and the

threshold‑dependent trade‑offs important for

operational deployment decisions. Every experiment

is supposed to be reproducible by using the published

random seed, split protocol, and embedding cache to

ensure that point estimates and error analysis can be

repeated in different environments.

mailto:jnsc@alnoor.edu.iq

38

A l-Noor Journal for Information Technology and Cybersecurity, Vol.2, No.2, 2025 (31-40)

ISSN: 3078-5367 DOI: https://doi.org/10.69513/jncs.v2.i2.a5

jnsc@alnoor.edu.iq Website Journal:

Journal Email: jncs@alnoor.edu.iq

Al-Noor Journal for Information Technology

 and Cybersecurity

 نور لتكنولوجيا المعلومات والأمن السيبرانيال مجلة

Table 4 . Comparison proposed method with

earlier study

The relative analysis of the results conducted in

Table 4 shows the work of different machine learning

models used in previous research and the suggested

ELMo-based model. Conventional classifiers like

Support Vector Machines (SVM), Random Forest

(RF), and Logistic Regression (LR) always obtained

high accuracy and balanced precision-recall scores

and in many cases more than 95 percent. It is

important to note that in Aung and Yaman study,

SVM achieved the best reported metrics across all

categories, although also the ensemble algorithms

such as RF and CatBoost had high generalization

ability.Contrastingly, the mean-pooled ELMo

embeddings and a Dense Neural Network with the

proposed model in this research yielded similar

results, with an accuracy of 0.95, a precision of 0.94,

a recall of 0.96, and an F1-score of 0.95. This set of

metrics ensures that contextualised word

representations directly lifted off of raw URLs can

rival or perform even better than the feature-

engineered methods of the past. Besides, there is an

added benefit of ELMo-based model semantic depth

and adaptability to obfuscated URL forms that are

usually overlooked by less adaptable lexical

features.This comparison highlights the feasibility of

deep contextual embeddings in tasks involving

phishing detection and makes the suggested

framework a viable modern alternative to traditional

classifiers, in particular, when the handcrafted

features are inadequate or infeasible. The ELMo-

based framework proved to be more robust than a

traditional feature-engineering approach when

compared to the traditional techniques. Contextual

embeddings were also more accurate to obfuscated

URLs and zero-day phishing attacks, unlike

handcrafted indicators, which are fragile to

adversarial manipulation, which underscores the

scalability and flexibility of the suggested method.

FIGURE 4. A confusion matrix for proposed method.

The majority of them did go wrong in situations

where phishing URLs had been designed to look like

valid domains or in cases where URLs were too short

and did not have enough contextual information. This

notwithstanding, this model had an optimal trade-off

between precision and recall, Visualization and

deployment, outside the numerical assessment,

practicability of the proposed system was

demonstrated in a Gradio-based graphical user

interface (GUI) as shown in Figure 5. This interface

allows testing of phishing URLs in real-time where

users can enter and test suspicious links directly.

Implementation of such an interactive tool

demonstrates usability of the model as a contribution

to research, as well as, one of the solutions that can

be deployed in the actual world to detect phishing in

practice.

Table 5 .Performance comparison by time,

complexity, and memory

As shown in Table 5. traditional machine learning

approaches are computationally lightweight but lack

robustness against obfuscation. Character-level and

ensemble models improve accuracy but often incur

higher complexity and memory costs. WebPhish,

while accurate, requires substantial resources and

retraining. In contrast, the proposed ELMo-based

model achieves a significant reduction in generation

time (from 12.6 seconds to 0.239 seconds for ten

URLs) while maintaining moderate complexity and

Study / Authors Dataset Used Methodology
Reported

Performance
Limitations

Proposed

Approach

Improvements

Heidari et al.

(2020)
Custom annotated

ELMo/GloVe +

profile-conditioned

NN

Accuracy ~0.98

Relies on

annotation quality,

domain-specific

Applies ELMo

directly to URLs,

avoiding

annotation

dependency

Aggarwal (2023)
Malware API

dataset

Word2Vec, ELMo,

BERT embeddings

+ classifiers

Accuracy up to

0.93

Modest dataset

size, dynamic-only

API features

Larger balanced

dataset, contextual

embeddings for

phishing URLs

Almousa & Anwar

(2023)

Phishing URL

corpus

CharacterBERT,

LSTM, CNN
Accuracy ~99.6

URL-only signals,

dataset imbalance

Captures semantic

+ syntactic cues,

resilient to

obfuscation

Rastakhiz et al.

(2024)
Public phishing set

QuickCharNet

(char-CNN

pooling)

+4.9% over

baselines

Tokenizer

sensitivity, modest

gains

Higher

generalization via

contextual

embeddings

Alshattnawi et al.

(2024)

Benchmark

datasets

ELMo/BERT vs

Word2Vec/GloVe
Accuracy 90–94%

Platform-specific,

domain drift

Applies contextual

embeddings to

phishing URLs

directly

Khan et al. (2024)
Phishing URL

dataset

RF, SVM, Logistic

Regression
Accuracy ~88%

Handcrafted

features, limited

generalization

Eliminates manual

features, improves

robustness

Opara et al. (2024) WebPhish dataset
WebPhish (URL +

HTML CNN)
Accuracy ~98%

Computationally

intensive,

retraining needed

Efficient

embeddings,

reduced generation

time

Mahmud et al.

(2025)
PhiUSIIL dataset

Stacking ensemble

(ML + DL)
Accuracy ~99.9%

Overfitting, URL-

only features

Balanced

performance,

reduced false

negatives

Proposed ELMo-

based model

(2025)

PhiUSIIL dataset

ELMo contextual

embeddings +

DNN

Accuracy 95%, F1

0.95, Gen. time

↓12.6s→0.239s

—

Robust, efficient,

minimizes false

negatives

Approach / Study Generation Time
Computational

Complexity
Memory Usage Notes

Traditional ML (RF,

SVM, LR)
Fast (<1s per batch) Low Low

Relies on handcrafted

features, limited

generalization

Character-level models

(LSTM, CNN,

CharacterBERT)

Seconds per batch Moderate Moderate

Robust to non-standard

vocabularies but URL-

only signals

WebPhish (CNN on

URL+HTML)
High (>10s per batch) High High

Accurate but

computationally

intensive, retraining

needed

Stacking ensemble

(Mahmud et al., 2025)
Not reported Very High Very High

Risk of overfitting,

heavy resource

consumption

Proposed ELMo-

based model

↓12.6s → 0.239s (10

URLs)

Moderate (ELMo +

DNN)
Moderate

Efficient, robust,

minimizes false

negatives

mailto:jnsc@alnoor.edu.iq

39

A l-Noor Journal for Information Technology and Cybersecurity, Vol.2, No.2, 2025 (31-40)

ISSN: 3078-5367 DOI: https://doi.org/10.69513/jncs.v2.i2.a5

jnsc@alnoor.edu.iq Website Journal:

Journal Email: jncs@alnoor.edu.iq

Al-Noor Journal for Information Technology

 and Cybersecurity

 نور لتكنولوجيا المعلومات والأمن السيبرانيال مجلة

memory usage. This balance of efficiency and

robustness highlights its suitability for real-time

phishing detection scenarios.

FIGURE 5. GUI for Real-time Testing

7. Conclusion

The paper discussed a URL-based phishing detector

that replaces the weak hand-designed features with

contextual embeddings of ELMo and a small MLP

model. This way, early screening can be

accomplished without page-fetching while keeping

the 80/20 stratified evaluation protocol consistent

and reproducible. The study addressed the limitations

of traditional machine learning approaches, which

often rely on handcrafted lexical features that are

vulnerable to obfuscation techniques and fail to

generalize across diverse phishing strategies. By

leveraging contextual embeddings, the proposed

framework captures both syntactic and semantic

dependencies within raw URLs, thereby enhancing

robustness against adversarial manipulations such as

homoglyph substitutions and random string

insertions.

Experimental evaluation on the PhiUSIIL dataset

demonstrated the effectiveness of the model,

achieving 95% accuracy, 94% precision, 96% recall,

and an F1-score of 0.95. Beyond accuracy, the

system exhibited remarkable efficiency, reducing

generation time from 12.6 seconds to 0.239 seconds

for ten URLs, while maintaining moderate

computational complexity and memory usage. This

efficiency is critical for real-time deployment

scenarios, where rapid detection can prevent user

exposure to malicious content.

The contributions of this work are twofold: first, it

establishes the value of contextualized embeddings

in phishing detection, moving beyond the constraints

of feature engineering; second, it demonstrates that

high accuracy can be achieved without sacrificing

computational efficiency. These findings underscore

the practical applicability of the proposed approach

and its potential to serve as a scalable solution in

cybersecurity infrastructures.

Overall, the results confirm that contextualized

representations provide a practical and scalable

solution to minimizing false negatives in phishing

detection, offering a significant improvement over

traditional lexical-based approaches.

 Reference

1. Ahmed, I., A.K. Ali, and M.S. Mahmood,

Employing Hybrid Watermarking to

Improve Email Security Against Cyber

Attacks. Journal of Soft Computing and

Data Mining, 2025. 6(1): p. 435-447.

2. Alkhalil, Z., et al., Phishing attacks: A

recent comprehensive study and a new

anatomy. Frontiers in Computer Science, 3,

563060. 2021.

3. Kavya, S. and D. Sumathi, Staying ahead of

phishers: a review of recent advances and

emerging methodologies in phishing

detection. Artificial Intelligence Review,

2024. 58(2): p. 50.

4. Barik, K., S. Misra, and R. Mohan, Web-

based phishing URL detection model using

deep learning optimization techniques.

International Journal of Data Science and

Analytics, 2025: p. 1-23.

5. Thapa, J., et al., Phishing Detection in the

Gen-AI Era: Quantized LLMs vs Classical

Models. arXiv preprint arXiv:2507.07406,

2025.

6. Wei, Y., M. Nakayama, and Y. Sekiya,

Enhancing Generalization in Phishing URL

Detection via a Fine-Tuned BERT-Based

Multimodal Approach. IEEE Access, 2025.

13: p. 131197-131216.

7. Murhej, M. and G. Nallasivan, Multimodal

framework for phishing attack detection and

mitigation through behavior analysis using

EM-BERT and SPCA-BASED EAI-SC-

LSTM. Frontiers in Communications and

Networks, 2025. 6: p. 1587654.

8. Heidari, M., J.H. Jones, and O. Uzuner.

Deep contextualized word embedding for

text-based online user profiling to detect

social bots on twitter. in 2020 International

Conference on Data Mining Workshops

(ICDMW). IEEE, 2020.

9. Almousa, M. and M. Anwar, A URL-based

social semantic attacks detection with

character-aware language model. IEEE

Access, 2023. 11: p. 10654-10663.

10. Rastakhiz, F., M. Eftekhari, and S. Vahdati,

QuickCharNet: An Efficient URL

Classification Framework for Enhanced

Search Engine Optimization. IEEE Access,

2024.

11. Alshattnawi, S., et al., Beyond word-based

model embeddings: Contextualized

representations for enhanced social media

mailto:jnsc@alnoor.edu.iq

40

A l-Noor Journal for Information Technology and Cybersecurity, Vol.2, No.2, 2025 (31-40)

ISSN: 3078-5367 DOI: https://doi.org/10.69513/jncs.v2.i2.a5

jnsc@alnoor.edu.iq Website Journal:

Journal Email: jncs@alnoor.edu.iq

Al-Noor Journal for Information Technology

 and Cybersecurity

 نور لتكنولوجيا المعلومات والأمن السيبرانيال مجلة

spam detection. Applied Sciences, 2024.

14(6): p. 2254.

12. Khan, A., D.M. Ahmed, and A. Fathima,

Enhanced Phishing Detection Using

Machine Learning Algorithms: A

Comparative Study of Random Forest,

SVM, and Logistic Regression Models.

SVM, and Logistic Regression Models

(March 24, 2025), 2025.

13. Aggarwal, S., Malware Classification using

API Call Information and Word

Embeddings. 2023.

14. Mahmud, T., et al. A Machine Learning-

Based Framework for Malicious URL

Detection in Cybersecurity. in 2025 8th

International Conference on Information

and Computer Technologies (ICICT). IEEE,

2025.

15. Opara, C., Y. Chen, and B. Wei, Look

before you leap: Detecting phishing web

pages by exploiting raw URL and HTML

characteristics. Expert Systems with

Applications, 2024. 236: p. 121183.

16. Ilić, S., et al., Deep contextualized word

representations for detecting sarcasm and

irony. arXiv preprint arXiv:1809.09795,

2018.

17. U. S. DR, A. Patil et al., Malicious URL

detection and classification analysis using

machine learning models. in 2023

International Conference on Intelligent

Data Communication Technologies and

Internet of Things (IDCIoT). IEEE, 2023,

pp. 470–476.

18. T. Mahmud, M. A. H. Prince, M. H. Ali, M.

S. Hossain, and K. Andersson, Enhancing

cybersecurity: Hybrid deep learning

approaches to smishing attack detection.

Systems, vol. 12, no. 11, p. 490, 2024.

19. N. P. Mankar, P. E. Sakunde, S. Zurange, A.

Date, V. Borate, and Y. K. Mali,

Comparative evaluation of machine

learning models for malicious URL

detection. in 2024 MIT Art, Design and

Technology School of Computing

International Conference

(MITADTSoCiCon). IEEE, 2024, pp. 1–7.

20. N. Datta, T. Mahmud, M. T. Aziz, R. K.

Das, M. S. Hossain, and K. Andersson,

Emerging trends and challenges in

cybersecurity data science: A state-of-the-

art review. in 2024 Parul International

Conference on Engineering and Technology

(PICET), 2024, pp. 1–7.

21. T. Akter, M. S. Akter, T. Mahmud, D.

Islam, M. S. Hossain, and K. Andersson,

Evaluating machine learning methods for

Bangla text emotion analysis. in 2024 Asia

Pacific Conference on Innovation in

Technology (APCIT). IEEE, 2024, pp. 1–6.

22. S. R. Naher, S. Sultana, T. Mahmud, M. T.

Aziz, M. S. Hossain, and K. Andersson,

Exploring deep learning for Chittagonian

slang detection in social media texts. in

2024 International Conference on

Electrical, Computer and Energy

Technologies (ICECET). IEEE, 2024, pp.

1–6.

23. S. U. Habiba, T. Mahmud, S. R. Naher, M.

T. Aziz, T. Rahman, N. Datta, M. S.

Hossain, K. Andersson, and M. S. Kaiser,

Deep learning solutions for detecting

Bangla fake news: A CNN-based approach.

Proceedings of Trends in Electronics and

Health Informatics: TEHI 2023, p. 107.

24. T. Mahmud, M. F. B. A. Aziz, A.

Majumder, S. M. Farid, and T. Akter, Deep

learning-based systems for detecting hate

speech and offensive language in texts. in

2024 IEEE International Conference on

Computing, Applications and Systems

(COMPAS). IEEE, 2024, pp. 1–5.

mailto:jnsc@alnoor.edu.iq

