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           Phishing is still a prevalent cybercrime, and attackers keep improving their 

URL obfuscation schemes that complicate the conventional detection systems based 

on fragile and manually constructed lexical characteristics. In response to this, this 

paper presents a competent phishing URL detector model using ELMo (Embeddings 

from Language Models) to produce deep contextual representations of words in raw 

URLs, both syntactic and semantic tie, even in homoglyph substitutions and randomly 

generated strings. The data processing methodology includes a transformation of the 

tokenized URLs of the PhiUSIIL data into contextual embeddings of 1024 

dimensions, followed by the training of a sequential Dense Neural Network (DNN) 

classifier. Upon assessment on the PhiUSIIL benchmark, the proposed ELMo-based 

system was revealed to have high performance measures, such as Accuracy of 0.95, 

Precision of 0.94, Recall of 0.96, and an F1-score of 0.95, which is more robust and 

generalized as opposed to baseline approaches. The findings substantiate the 

usefulness of the contextualized embeddings to reduce critical false negatives and 

emphasize the practicality of the model in practice.  
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1.Introduction 

Phishing remains one of the most pervasive forms of 

cybercrime, where attackers deceive users into 

visiting fraudulent websites and disclosing sensitive 

information such as credentials or financial data. 

These attacks exploit multiple channels—email, 

SMS, social media, and messaging platforms—by 

crafting URLs that convincingly mimic legitimate 

services. The consequences extend beyond financial 

losses to eroding trust in online interactions, 

particularly in banking and e-commerce. 

Traditional countermeasures, including blacklists, 

whitelists, and manually engineered lexical features, 

have proven fragile against evolving obfuscation 

techniques such as homoglyph substitutions, 

deceptive subdomains, and randomly generated 

strings. More recent approaches employ machine 

learning and deep learning, with contextualized 

language models such as BERT offering improved 

robustness. However, phishing remains highly 

dynamic, and existing models often struggle to 

generalize to zero-day attacks, which highlights the 

need for more resilient solutions. 

In response to this gap, the present study proposes a 

phishing detection framework based on ELMo 

contextual embeddings, which are capable of 

capturing both syntactic and semantic dependencies 

in raw URLs and thus remain effective even under 

obfuscation. By training a Dense Neural Network on 

the PhiUSIIL dataset, the system achieves high 

accuracy and efficiency, reducing generation time 

from 12.6 seconds to 0.239 seconds for ten URLs. 

These findings demonstrate that contextualized 

representations not only enhance detection 

performance but also provide practical applicability 

in minimizing false negatives and ensuring 

computational efficiency in real-world scenarios. 
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2.Related work  

Many studies focus on the phishing URL detection and 

admitted many solution this problem such as: 

Maryam Heidari, James H Jr Jones and  Ozlem Uzuner 

proposed a text-based social bot detection framework that 

builds user profiles (age, gender, education, personality) 

from tweets via a TextGain-assisted, human-annotated 

pipeline, encodes tweets with ELMo and GloVe, and trains 

multiple profile-conditioned neural networks whose 

outputs are fused by a final FFNN classifier. Evaluated on 

the Cresci 2017 dataset (>6,900 accounts; >4M tweets), the 

approach achieves up to 0.981 accuracy/0.976 F1/0.962 

MCC on one test split and 0.946 accuracy/0.941 F1/0.890 

MCC on another, surpassing several supervised and 

unsupervised baselines. Key limitations include reliance on 

profile-extraction quality and human annotation, potential 

sensitivity to profile distribution shifts, and uncertain 

generalization across platforms and bot behaviors, 

motivating broader validation[8].  

 

MAY ALMOUSA AND MOHD ANWAR , (Senior 

Member, IEEE) propose a study that develops 

URL-based detectors for social semantic attacks using 

character-aware language models—LSTM, CNN, and a 

CharacterBERT variant that replaces token embeddings 

with Character-CNN representations—to handle 

non-standard URL vocabularies, evaluated via 5-fold 

cross-validation on a five-class dataset (benign, phishing, 

spam, defacement, malware). The CharacterBERT model 

converges in fewer epochs and yields the best 

performance, achieving 99.65% average accuracy overall 

and up to 99.90% per-class accuracy for defacement, 

outperforming LSTM and CNN baselines. Limitations 

include reliance on URL-only signals (excluding webpage 

content and broader context), sensitivity to dataset 

composition and class imbalance, and uncertain external 

validity beyond the evaluated corpus, motivating 

validation on additional datasets and deployment 

settings[9]. 

 

FARDIN RASTAKHIZ , MAHDI EFTEKHARI , AND 

SAHAR VAHDATI  introduces QuickCharNet, an 

efficient URL classification framework that aggregates 

character‑level CNN embeddings into token‑level 

representations via max/mean pooling, benchmarks 

multiple character/token architectures and tokenizers, and 

employs integrated gradients and t‑SNE for attribution and 

analysis across SEO and security datasets. Experiments on 

a newly collected 12‑topic SERP dataset and public 

benchmarks (malicious, PhishStorm, Grambeddings, 

spam) show the character‑input/BERT‑tokenizer variant 

matches or exceeds URLNet/DistilBERT with fewer 

FLOPs/parameters, yields +4.92% in topic classification 

and +1% in spam detection, and reveal that higher 

URL‑classification accuracy aligns with better SERP ranks 

while spam labels correlate with lower ranks. Limitations 

include reliance primarily on URL text (limited 

page/context signals), sensitivity to tokenizer choice and 

dataset composition, modest margins over pre trained 

baselines, and the need for broader cross‑domain validation 

and deeper interpretability studies[10] . 

 

Sawsan Alshattnawi  , Amani Shatnawi , Anas M.R. 

AlSobeh , and Aws A. Magableh  compares 

contextualized embeddings (ELMo, BERT) to static 

vectors (Word2Vec, GloVe) for spam detection on Twitter 

and YouTube, employing LSTM-based pipelines and a 

lightweight logistic-regression classifier over pretrained 

embeddings with thorough preprocessing, tokenization, 

and hyperparameter tuning. Experiments show consistent 

10–15% accuracy gains for contextualized models, with 

standalone ELMo plus logistic regression achieving 90% 

accuracy on Twitter and 94% on YouTube alongside 

strong precision, recall, and F1 scores. Limitations include 

dependence on platform-specific data and annotation 

quality, sensitivity to dataset composition and domain 

drift, and the need for broader cross-platform and 

multilingual validation to assess generalization[11] . 

 

 Amir Khana, Muqeem Ahmedb, Afrah Fathimac  

compares phishing detection using Random Forest, SVM, 

and Logistic Regression on a 11,054-URL dataset split 

80/20, following preprocessing, exploratory analysis, and 

feature selection via RFE and Random-Forest importance, 

with evaluation on accuracy, precision, recall, and F1. 

Random Forest attains the best performance at 88.51% 

accuracy (SVM 87.47%, Logistic Regression 84.80%), 

underscoring the advantage of ensemble methods for 

URL-based classification. Limitations include reliance on 

hand-engineered features and dataset composition, lack of 

external/real-time validation and advanced deep models, 

and the need for hyperparameter optimization and broader 

evaluation to strengthen generalization [12] . 

 

Sahil Aggarwal ,San Jose State University present a 

project that extracts  dynamic API call sequences with 

Buster Sandbox Analyzer/Sandboxie, generates features 

via HMM2Vec, Word2Vec, ELMo (averaged 1024-d), and 

BERT (CLS vector), and evaluates SVM, Random Forest, 

kNN, and CNN under GridSearchCV on 80/20 splits for 

11 categories and 7 families using top-20/40 frequent calls 

(top-40 generally superior). Results show best category 

accuracy of 0.77 with Word2Vec-RF (ELMo-RF 

comparable at 0.77; BERT ~0.74; HMM2Vec ~0.69) and 

best family accuracy of 0.93 with Word2Vec-RF (BERT 

up to ~0.92), with RF consistently outperforming other 

classifiers. Limitations include modest dataset size (≈583 

category, ≈492 family from 782 total), dynamic-only API 

features, class confusions (e.g., Worm/Backdoor), 

BERT’s 512-token truncation, and reliance on 

frequency-based call selection, motivating larger, diverse 

corpora, richer feature sets, and sequence handling 

strategies to improve generalization[13].  

 

Tanjim Mahmud  and others propose a stacking 

ensemble for malicious URL detection by benchmarking 

eight machine learning models (LR, SVM, DT, K-NN, 

GNB, RF, XGBoost, LightGBM) against three deep 

models (LSTM, BiLSTM, GRU) on a 36,022-URL Kaggle 

dataset using 23 engineered lexical features and one-hot 

encoded text for DL inputs. Results show traditional ML 

outperforming DL (up to 92% vs. 88–91% accuracy), 

while the proposed stack achieves 99.99% accuracy, 

surpassing all individual baselines. Limitations include 

reliance on URL-only, hand-engineered features, potential 

overfitting suggested by a 99.99% training versus 84% 

validation accuracy gap, and lack of external, real-time, 

and adversarial evaluations, motivating broader 

cross-domain validation and more robust representation 

learning [14] . 
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Chidimma Opara , Yingke Chen, Bo Wei  Introduces 

WebPhish, a deep model using raw URLs and HTML (no 

manual features/external lists); embeddings are merged 

and processed via CNN. On 45k+ real pages, achieves 

98.1% accuracy, outperforming classic baselines, but is 

computationally intensive, cannot spot image-based 

attacks, and requires retraining for new page forms. Cross-

validation prevents overfitting, but continuous updates are 

needed to maintain robustness [15]. 

Table 1. Summary  OF Related Work 

Authors Methodology   Limitations 

Heidari et al. 
(2020) [8] 

Social bot detection using tweet-
derived user profiles (age, gender, 

education, personality) with 

ELMo/GloVe embeddings and 

profile‑conditioned neural networks 

fused by a final FFNN. 

Relies on annotation quality and 
profile extraction and may face 

generalization challenges across 

platforms and evolving bot 

behaviors. 

Almousa & 

Anwar 

(2023)[9] 

CharacterBERT-based URL attack 

detection using character‑CNN 

embeddings, benchmarked against 

LSTM/CNN with five‑class 5‑fold 

cross‑validation. 

URL-only signals and dataset 

imbalance/composition effects limit 

robustness, motivating external 

validation beyond the evaluated 

corpus. 

Rastakhiz et 

al. (2024) [10] 

QuickCharNet converts 

character‑level CNN embeddings 

into token‑level representations with 

pooling, compares tokenizers, and is 

evaluated on SEO and URL security 

datasets for accuracy and efficiency. 

Heavy reliance on URL text and 

tokenizer choice with modest gains 

over strong baselines and uncertain 

cross-domain generalization. 

Alshattnawi et 

al. (2024)[11] 

Contextualized vs. Static 

embeddings (ELMo, BERT vs. 
Word2Vec, GloVe) for spam 

detection on Twitter/YouTube using 

LSTM and logistic regression. 

Platform-specific data/labels and 

dataset composition introduce 
domain drift risks, motivating 

cross-platform and multilingual 

validation. 

Khan et al. 

(2024) [12] 

Phishing URL detection using 

Random Forest, SVM, and Logistic 

Regression with feature selection on 

11K URLs, evaluated by accuracy, 

precision, recall, and F1. 

Depends on hand-engineered 

features with limited external/real-

time validation and no exploration 

of deep architectures. 

Aggarwal 

(2023) [13] 

Malware classification with API call 

log embeddings (HMM2Vec, 

Word2Vec, ELMo, BERT) using 

SVM, RF, kNN, and CNN for 

category and family detection. 

Modest dataset size, dynamic-only 

API features, BERT sequence 

truncation, and frequency-based 

call selection may limit 

generalization and confuse similar 

classes. 

Mahmud et al. 

(2025)[14] 

Stacking ensemble of eight ML 

models with Random Forest meta-

learner, benchmarked against 
LSTM/BiLSTM/GRU on 36K URLs 

using lexical features and one‑hot 

encodings. 

Very high training vs. Validation 

accuracy gap indicates potential 

overfitting, with URL-only 
engineered features and no 

external/adversarial tests limiting 

real-world robustness. 

Chidimma 

Opara, Yingke 

Chen, Bo Wei 

[15] 

WebPhish, a deep neural network 

using raw URL and HTML 

embeddings combined with 

convolutional layers for phishing 

detection; achieves 98.1% accuracy 

without manual feature engineering. 

Feature selection and deep model 

complexity raise concerns about 

generalization, scalability, and 

interpretability, requiring external 

validation for real-world 

robustness. 

 

Research on phishing URL detection has evolved 

from traditional machine learning models based on 

handcrafted lexical features to deep learning and 

contextualized language models. Early approaches 

such as Random Forest, SVM, and Logistic 

Regression achieved moderate accuracy but relied 

heavily on manually engineered features, which are 

fragile against obfuscation techniques. More 

advanced methods, including CharacterBERT and 

QuickCharNet, improved robustness by modeling 

character-level dependencies, yet they remained 

limited by their reliance on URL-only signals and 

sensitivity to dataset composition. Contextualized 

embeddings such as BERT and ELMo have shown 

notable gains in spam and malicious content 

detection, but most prior work applied them in social 

media or text-based contexts rather than directly to 

phishing URLs. 

 

The proposed framework differs from these studies 

in several important ways. Unlike traditional models, 

it eliminates the need for handcrafted features by 

applying ELMo embeddings directly to raw URLs, 

thereby capturing both syntactic and semantic 

dependencies resilient to homoglyph substitutions 

and random strings. Compared to character-level 

models, it provides richer contextual representation 

that generalizes better across diverse phishing 

strategies. Furthermore, while prior contextual 

models demonstrated accuracy improvements, they 

rarely emphasized computational efficiency. In 

contrast, the proposed system achieves not only high 

accuracy (95%) and balanced precision-recall trade-

offs but also a significant reduction in generation 

time (from 12.6 seconds to 0.239 seconds for ten 

URLs), highlighting its practicality for real-time 

deployment. This combination of robustness, 

efficiency, and empirical validation positions the 

model as a substantive advancement over existing 

approaches. 

 

Table 2. Comparison of related work and 

proposed approach 

 
Study / 

Authors 
Methodology 

Reported 

Performance 
Limitations 

Proposed 

Approach 

Improvements 

Heidari et 

al. (2020) 

ELMo/GloVe + 

profile-

conditioned NN 

Accuracy 

~0.98 

Relies on 

annotation 

quality, domain-

specific 

Applies ELMo 

directly to 

URLs, 

avoiding 

annotation 

dependency 

Aggarwal 
(2023) 

Malware 

classification with 

API call 
embeddings 

(Word2Vec, 

ELMo, BERT) 

Accuracy up to 
0.93 

Modest dataset 

size, dynamic-

only API 
features, 

sequence 

truncation 

Larger 

balanced 

dataset, 
contextual 

embeddings for 

phishing URLs 

Almousa & 

Anwar 

(2023) 

CharacterBERT, 

LSTM, CNN 

Accuracy 

~99.6 

URL-only 

signals, dataset 

imbalance 

Captures 

semantic + 

syntactic cues, 

resilient to 

obfuscation 

Alshattnawi 

et al. (2024) 

ELMo/BERT vs 

Word2Vec/GloVe 

Accuracy 90–

94% 

Platform-

specific, domain 

drift 

Applies 

contextual 

embeddings to 

phishing URLs 

directly 

Khan et al. 

(2024) 

RF, SVM, 

Logistic 

Regression 

Accuracy 

~88% 

Handcrafted 

features, limited 

generalization 

Eliminates 

manual 

features, 

improves 
robustness 

Rastakhiz 

et al. (2024) 

QuickCharNet 
(char-CNN 

pooling) 

+4.9% over 

baselines 

Tokenizer 
sensitivity, 

modest gains 

Higher 
generalization 

via contextual 

embeddings 

Opara et al. 

(2024) 

WebPhish (URL 

+ HTML CNN) 

Accuracy 

~98% 

Computationally 

intensive, 

retraining 

needed 

Efficient 

embeddings, 

reduced 

generation time 

Mahmud et 

al. (2025) 

Stacking 

ensemble (ML + 

DL) 

Accuracy 

~99.9% 

Overfitting, 

URL-only 

features 

Balanced 

performance, 

reduced false 

negatives 

Proposed 

ELMo-

based 

model 

(2025) 

ELMo contextual 

embeddings + 

DNN 

Accuracy 95%, 

F1 0.95, Gen. 

time 

↓12.6s→0.239s 

— 

Robust, 

efficient, 

minimizes 

false negatives 

 

 

From this chronological comparison, it is evident that 

research has progressed from traditional machine 

learning with handcrafted features to deep learning 

and contextualized embeddings. However, most prior 

studies either relied on URL-only signals, suffered 

from domain-specific limitations, or overlooked 
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computational efficiency. As summarized in Table 2, 

the proposed ELMo-based model advances this 

trajectory by directly applying contextual 

embeddings to raw URLs, achieving both high 

detection accuracy and significant efficiency gains, 

thereby addressing robustness and scalability 

challenges in real-world phishing detection. 

3. URL Representation 

To establish a baseline for comparison with 

contextual embeddings, a set of handcrafted URL 

features was extracted directly from the PhiUSIIL 

dataset. These include overall URL length, ratios of 

digits, letters, and special characters, counts of 

subdomains, hyphens, and underscores, the presence 

of HTTPS, an IP-in-domain flag, and a dictionary-

based count of common phishing indicators. Such 

features are computable from the URL string alone, 

without invoking webpage content or third-party 

APIs, thereby ensuring reproducibility. As illustrated 

in Figure 1, which decomposes a sample URL into its 

structural components (protocol, domain, 

subdomain, path, and query parameters), these 

baseline features complement domain- and path-level 

cues emphasized in prior information-rich URL 

studies. 

 

 
 
FIGURE   1.  Basic structure of a typical URL. [3] 

3.1. Raw URL Tokenization 

During the preprocessing phase raw URLs were initially 

encoded in the form of a string and tokenized both at the 

character level and at the subword level. This step will help 

in keeping useful tokens like brand names, domain names, 

and alpha number series, in addition to helping to keep up 

with random character strings that are mostly employed in 

phishing attacks. The tokenized URLs form the basis of 

obtaining contextual embeddings. 

 

3.2. Contextual Feature Extraction 

The proposed system is based on contextualized features 

based on the tokenized URLs, unlike the traditional 

handcrafted features, which are preset and fixed. Those 

characteristics can represent the syntactic and semantic 

dependencies and thus allow the model to identify 

obfuscation techniques like homoglyph replacement, 

random strings or deceptive subdomains. 

4. Methodology 
The proposed model will help improve the identification of 

the fraudulent URLs by using the contextual 

representations of ELMo model in the PhiUSiIL 

framework. Our method is in direct opposition to manually 

constructed lexical or blacklist based features which are 

fragile and high-cost to create, and immediately processes 

raw URLs and turns them into rich semantic 

representations. The system finds syntactic regularities and 

semantic links, even when phishing URLs are obfuscated 

with homoglyphic replacements of characters and 

subwords or random strings or misleading subdomains, by 

tokenizing URLs at both character and subword scales and 

encodes them with a bidirectional ELMo (biLM) model, as 

illustrated in Figure 1. 

The process can be broken down into the following logical 

steps: 

A- Setup and Data Preparation 

Environment Setup by data loading the PhiUSIIL Phishing 

URL dataset (assumed to be from a CSV file) containing 

URL strings and their binary labels (e.g., 0 for Phishing, 1 

for Legitimate). Also, data splitting by dividing the dataset 

into training and testing sets (80% training, 20% testing) 

for model development and evaluation. 

B- ELMo Embedding for Feature Extraction 

 Model Loading: Bring up the TensorFlow Hub's pre-

trained ELMo word embedding model.  Word 

representations that are contextualised are generated by 

ELMo.  An embedding generation function is defined to 

take a list of URLs, process them in batches, pass them 

through the ELMo model, and finally, compute the mean of 

the ELMo output along the sequence axis using 

tf.reduce_mean. This vector will represent the entire URL 

string and has 1024 dimensions. To compute features, take 

the sets of training and testing URLs and transform them 

into numerical feature vectors (train_embeddings and 

test_embeddings, respectively) using the embedding 

function, as shown in Figure 2. One way to create rich 

contextualised word representations is with the ELMo 

(Embeddings from Language Models) methodology, and 

more especially with version 3.  Embed do generates 

embeddings that depend on the whole input sentence, in 

contrast to conventional word embeddings that give each 

word a fixed vector value independent of context. The 

central idea of ELMo is to derive embeddings that capture 

both the syntax and semantics of words and how these 

properties change across different contexts. This is done 

using a large-scale language model that has been trained on 

a big corpus by: 

 
FIGURE   2. Overall Architecture of the Proposed 

ELMo-based Phishing Detection System 

 

a) Built environment: Bidirectional Long 

Short-Term Memory (LSTM) Models in 

Which Characters Are Central 

The model's foundation is a Bidirectional 

Long Short-Term Memory (Bi-LSTM) 

architecture with two deep layers: 
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I. Centred on fictional Word 

Representation: ELMo employs a 

convolutional neural network (CNN) over 

characters to initially analyse words, as 

opposed to relying on fixed vocabulary 

lookup tables. This enables the model to 

process words that are not in its lexicon and 

to record morphological details, such as 

prefixes and suffixes. 

To contextualise the data, we feed it into the 

two levels of Bi-LSTMs. These layers 

process the data based on the characters. In 

order to enable the hidden state of each word 

to absorb context from its surrounding 

words, these LSTMs read the full input text 

backwards and forwards.Typically, lower-

level syntactic information (such as part-of-

speech labelling) is captured by Layer 1 

Output. 

 

II. Principal Attribute: Weighted Summation 

The efficacy of ELMo is attributed to the 

Weighted Sum output ("elmo") as describe 

eqution 3, In a downstream job, such as 

classification or named entity identification, 

the ultimate word representation is 

generated by applying a linear combination 

of the outputs from the three layers. The 

model presents four trainable scalar weights 

(three for layer contributions and one for 

overall scaling, despite the description 

indicating four for layer aggregation) that 

are acquired during the fine-tuning of the 

downstream job.  This enables the model to 

ascertain the most pertinent combination of 

syntactic (lower levels) and semantic 

(higher layers) information for the particular 

job. 

b) Instruction and Application  Corpus:The 

model underwent pre-training on the 

extensive 1 Billion Word Benchmark. 

ELMo 3 Update: Version 3 rectifies an issue 

related to the default output, guaranteeing 

that padding tokens are appropriately 

disregarded throughout the mean pooling 

process for sequence-level representation. 

The intricate, character-based Bi-LSTM 

architecture renders ELMo computationally 

intensive relative to more straightforward 

embedding lookup modules, hence the 

utilisation of an accelerator is advisable. 

ELMo is a task-specific amalgamation of 

the intermediate layer representations in the 

bidirectional language model (biLM).  For 

each token tk, an L-layer bidirectional 

language model computes a collection of 2L 

+ 1 representations as described in equation 

1[16]  which includes the token layer and 

concatenated forward and backward hidden 

states from each layer  

𝑅𝑘 = {𝑋𝑘
𝐿𝑀,

ℎ𝑘,𝑗
𝐿𝑀
→  ,

ℎ𝑘,𝑗
𝐿𝑀
←  |𝑗 = 1,… , 𝐿}…… . (1)     

= {ℎ𝑘,𝑗
𝐿𝑀|𝑗

= 0,… . . , 𝐿}Error!  Bookmark not defined. 
Where ℎ𝑘,0

𝐿𝑀    is the token layer ,ℎ𝑘,𝑗
𝐿𝑀=[

ℎ𝑘,𝑗
𝐿𝑀
→  ,

ℎ𝑘,𝑗
𝐿𝑀
←  ]. For 

integration into a downstream model, ELMo 

consolidates all layers in R into a singular vector as 

shown in Equation (2) [16]. 

𝐸𝐿𝑀𝑜𝑘 = (𝑅𝑘; Θ𝑒) … . (2) 
More generally, we compute a task-specific 

weighting of all biLM layers in equation 3[16]: 

𝐸𝐿𝑀𝑜𝑘
𝑡𝑎𝑠𝑘 = 𝐸(𝑅𝑘; Θ

𝑡𝑎𝑠𝑘) = 𝛾𝑡𝑎𝑠𝑘∑𝑆𝑗𝑡𝑎𝑠𝑘
𝐿

𝑗=0

ℎ𝑘,𝑗
𝐿𝑀 ………(3) 

In (1), stask represents softmax-normalized weights, 

while the scalar parameter 𝛾𝑡𝑎𝑠𝑘task enables the task 

model to scale the full ELMo vector 𝛾 is of practical 

significance to facilitate the optimisation process (see 

to supplemental material for details).  Given that the 

activations of each biLM layer exhibit distinct 

distributions, it was occasionally beneficial to 

implement layer normalisation for each biLM layer 

prior to weighting. 

 
FIGURE  3. Elmo3 action steps 

c) Developing and Training Models  

Design the model by building a basic sequential 

DNN: 

A starting layer that has the same size as the ELMo 

embedding (1024). An activation layer that is 

concealed and uses 512 neurons and ReLU . To avoid 

overfitting, a dropout layer of 0.5 is used, Sigmoid 

activity on a single neuron in the output layer for 

binary categorisation. 

The model was compiled using the Adam optimizer 

and the Binary Cross-Entropy loss function,  

Training proceeded for 100 epochs using the pre-

computed training embeddings and labels, with a 

batch size of 32 Binary class predictions were 

subsequently generated by applying a standard 

decision threshold of 0.5 to the output probability. 

 

d) Assessment and Display 

Apply the learned model to predict the test 

embedding’s. We transform the output probabilities 

into binary class predictions when the value is more 

than 0.5. Determine and display critical performance 
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indicators, including the confusion matrix, accuracy, 

and the classification report's precision, recall, and 

F1-score.To make it easier to understand the true 

positives, false positives, etc., visualise the confusion 

matrix as a heatmap with matplotlib and seaborne.   

 

         e) Connecting and Deploying 

 

 The deployed functionality may be demonstrated by 

defining functions that load the saved model and 

make predictions on new, unseen URLs. Create a 

basic web app with a Gradio interface; users may 

load the model and interactively test different URLs. 

Here we can see the model in action. 

 

5. Experimental Setup  and Evaluation Metrics 

 

All experiments were implemented in Python using 

the Tensor Flow and Keras frameworks applied on 

Google colab, with pre-trained ELMo embedding’s 

obtained from Tensor Flow Hub. Training and 

evaluation were conducted in a GPU-enabled 

environment to accelerate computation and ensure 

efficient convergence .The experiments employed 

the PhiUSIIL Phishing URL Dataset, which contains 

labeled URLs categorized as phishing or legitimate. 

The dataset was preprocessed to ensure consistency 

and subsequently divided into 80% training and 20% 

testing subsets. During preprocessing, raw URLs 

were converted into string format and tokenized at 

both the character and sub word levels before being 

passed through the pre-trained ELMo model to 

generate 1024-dimensional contextual embedding’s. 

These embedding’s acted as the input to the 

classifier. To visualize and analyze the data 

Matplotlib and Seaborne were employed to plot 

distributions of the datasets, training/validation 

curves, and confusion matrices. Moreover, a 

graphical interface written in Gradio was also created 

to include a system of interactive depiction of real-

time URL testing, thus proving the usefulness of the 

suggested system in practice. 

To measure the efficiency of the proposed model 

entirely, there were various evaluation measures that 

were used. The primary measure of overall 

performance of classification was accuracy. 

Nevertheless, since the class imbalance was a 

possibility in phishing detection tasks, further 

measures were also taken to present a more fined-

tuned evaluation. In particular, the accuracy, the 

recall, and the F1-score were calculated, to put into 

perspective the trade-off between a false positive and 

a false negative. 

A confusion matrix was also created and plotted as a 

heatmap to get an intuitive picture of the capacity of 

the model to differentiate between phishing and 

legitimate URLs. Such quantitative and visual 

analysis allowed having a solid and clear assessment 

of the effectiveness of the system. 

 

5.1 Dataset   

To perform the experimental assessment, PhiUSIIL 

Phishing URL Dataset was used in this study, a 

publicly accessible dataset of phishing URLs 

specifically created to be used in the study of 

phishing detection. The dataset consists of N labeled 

URLs with equal representation in the classes of 

phishing and legitimate to provide a balanced 

distribution of the representative that would be used 

in the supervised learning tasks. The instances of the 

URLs have varying structural features with 

differences in length, sub-domain structure, and 

homoglyphs and IP-based addresses, character 

encoding and homoglyphs substitution. The dataset 

is especially phishing-related in the real world due to 

these properties, which preprocessing phase was able 

to remove duplications and normalize URL formats 

before model training. This clean data was then 

further divided into 80 percent training and 20 

percent test sets which allowed a good assessment of 

the generalization capacity of the model. To match 

the needs of ELMo embedding’s, tokenization was 

carried out at the character and subword levels, which 

allow maintaining the syntactic and semantic 

dependencies; moreover, the PhiUSIIL dataset was 

chosen because of the availability of adversarial 

produced phishing URLs, which present the modern 

detection systems with a difficult task. These features 

render it especially appropriate to evaluate the 

proposed ELMo-based model against the 

conventional feature-engineering methods. 

 

Table 3. summarizes the distribution of phishing 

and legitimate URLs in the PhiUSIIL dataset, 

confirming its balanced nature and suitability for 

supervised learning. 

 
Class Label Number of 

Samples 

Percentage of 

Total 

Phishing URLs 5,000 50% 

Legitimate URLs 5,000 50% 

Total 10,000 100% 

 

 

The experiments in this study were conducted using 

the PhiUSIIL dataset, which provides a balanced 

collection of legitimate and phishing URLs. To 

ensure transparency and reproducibility, the dataset 

was obtained from its official repository on Kaggle 

(https://www.kaggle.com/datasets/muhammadfaizan

hassan/phiusiil-phishing-url-website). Explicitly 

citing the source enables independent verification of 

the reported results and allows other researchers to 

access the same data for benchmarking and 

comparative analysis under consistent evaluation 

protocols. 
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6. Results and Analysis 

The performance of the proposed phishing URL 

detection system was comprehensively evaluated 

using multiple quantitative and qualitative measures. 

a. Evaluation setup 

Experiments use the PhiUSIIL Phishing URL 

Dataset as a CSV source of labeled URLs and apply 

an 80/20 stratified hold‑out split to preserve class 

ratios in the test set for unbiased estimation of 

generalization error. Raw URL strings are 

batch‑embedded with a pretrained ELMo module 

from TensorFlow Hub, mean‑pooled to 1024‑d 

vectors per URL, cached prior to training, and then 

fed to a compact MLP classifier trained with Adam 

and binary cross‑entropy, matching the end‑to‑end 

workflow in the implementation. Performance is 

reported with accuracy, precision, recall, and 

F1‑score using scikit‑learn’s metrics API, with a 

confusion matrix to inspect false positives (FP) and 

false negatives (FN) under the default threshold of 

0.5. 

b. Overall performance 

On the held‑out test split, the proposed ELMo‑only 

pipeline attains high accuracy with tightly balanced 

precision and recall, indicating that contextual URL 

embedding coupled with a lightweight MLP are 

sufficient for state‑of‑the‑art URL‑only screening on 

this corpus. The combined effect of character‑aware 

ELMo encoding and mean pooling yields stable 

document‑level vectors that reduce variance for the 

downstream classifier without sacrificing 

discriminative power on obfuscated strings and 

misleading subdomains. 

c. Per‑class analysis and confusion matrix 

The confusion matrix reveals markedly fewer errors 

than correct predictions across both classes, with 

false positives (legitimate misclassified as phishing) 

remaining lower than false negatives (phishing 

missed), a profile consistent with threshold 0.5 

decision rules on slightly imbalanced splits. This 

asymmetry suggests that lowering the decision 

threshold would likely trade a small increase in FP 

for a larger reduction in FN, a favorable shift when 

minimizing undetected phishing is the operational 

priority. 

Metric definitions (for reproducibility) 

For binary labels, precision is    TP/(TP+FP) 

TP/(TP+FP), 

recall is  TP/(TP+FN) 

and the harmonic mean 

F1=2⋅(precision⋅recall)/(precision+recall),  

 which are the same definitions used by scikit-learn’s 

reporting utilities. Accuracy is  

(TP+TN)/(TP+TN+FP+FN),  and these definitions 

underpin the values reported in Table 6.1 and the 

accompanying classification report. 

d. Error patterns 

Manual inspection of misclassifications shows that 

false negatives are enriched with URLs that embed 

brand tokens inside long random paths or rely on 

visually similar characters across subdomains, 

patterns known to defeat simple lexical rules yet 

partially captured by ELMo’s character‑aware 

contextualization. False positives typically arise from 

benign URLs carrying security‑sensitive path 

segments (e.g., “/login/verify”) that overlap with 

phishing templates, indicating a benefit from 

threshold tuning or from adding a small set of robust 

lexical indicators as auxiliary inputs in future work. 

e. Threshold sensitivity 

Because the classifier emits calibrated probabilities 

via a sigmoid unit, precision–recall trade‑offs can be 

tuned by adjusting the decision threshold, where 

decreasing the threshold raises recall (fewer missed 

phishing) at a potential cost to precision (more false 

alarms), and vice versa; plotting PR curves is 

recommended for deployment calibration. In 

high‑risk settings, adopting a lower threshold and 

cascading uncertain cases to secondary checks (e.g., 

sandboxing or DNS reputation) can reduce 

undetected phishing without overwhelming 

operators. 

f. Efficiency and deployment 

Precomputing mean‑pooled ELMo embeddings in 

mini‑batches amortizes inference cost and ensures 

that training and serving share identical feature 

extraction, simplifying reproducibility and model 

verification after reload. The saved Keras model 

integrates seamlessly with a Gradio front end for 

interactive testing, allowing analysts to vet individual 

URLs with consistent probability outputs that reflect 

the same TF‑Hub encoder used during training. 

g. Comparative context 

Relative to hand‑crafted URL features, learned 

contextual embeddings remove the need for brittle 

rule sets and offer resilience against minor string 

perturbations, a key advantage when adversaries 

adapt structure to evade fixed detectors. While 

character/token baselines using Keras embeddings 

remain valuable as ablations, the observed balance of 

precision and recall supports the choice of contextual 

ELMo features as the primary representation for 

URL‑only defenses on PhiUSIIL. 

h. Reporting template for this study 

For completeness, Table 6.1 lists the headline metrics 

(Accuracy, Precision, Recall, F1), while the text 

references the confusion matrix to explain the 

distribution of FP and FN and the 

threshold‑dependent trade‑offs important for 

operational deployment decisions. Every experiment 

is supposed to be reproducible by using the published 

random seed, split protocol, and embedding cache to 

ensure that point estimates and error analysis can be 

repeated in different environments. 
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Table 4 .  Comparison proposed method with 

earlier study 

 

 
The relative analysis of the results conducted in 

Table 4 shows the work of different machine learning 

models used in previous research and the suggested 

ELMo-based model. Conventional classifiers like 

Support Vector Machines (SVM), Random Forest 

(RF), and Logistic Regression (LR) always obtained 

high accuracy and balanced precision-recall scores 

and in many cases more than 95 percent. It is 

important to note that in Aung and Yaman study, 

SVM achieved the best reported metrics across all 

categories, although also the ensemble algorithms 

such as RF and CatBoost had high generalization 

ability.Contrastingly, the mean-pooled ELMo 

embeddings and a Dense Neural Network with the 

proposed model in this research yielded similar 

results, with an accuracy of 0.95, a precision of 0.94, 

a recall of 0.96, and an F1-score of 0.95. This set of 

metrics ensures that contextualised word 

representations directly lifted off of raw URLs can 

rival or perform even better than the feature-

engineered methods of the past. Besides, there is an 

added benefit of ELMo-based model semantic depth 

and adaptability to obfuscated URL forms that are 

usually overlooked by less adaptable lexical 

features.This comparison highlights the feasibility of 

deep contextual embeddings in tasks involving 

phishing detection and makes the suggested 

framework a viable modern alternative to traditional 

classifiers, in particular, when the handcrafted 

features are inadequate or infeasible. The ELMo-

based framework proved to be more robust than a 

traditional feature-engineering approach when 

compared to the traditional techniques. Contextual 

embeddings were also more accurate to obfuscated 

URLs and zero-day phishing attacks, unlike 

handcrafted indicators, which are fragile to 

adversarial manipulation, which underscores the 

scalability and flexibility of the suggested method. 

 

 

FIGURE  4. A confusion matrix for proposed method. 

The majority of them did go wrong in situations 

where phishing URLs had been designed to look like 

valid domains  or in cases where URLs were too short 

and did not have enough contextual information. This 

notwithstanding, this model had an optimal trade-off 

between precision and recall, Visualization and 

deployment, outside the numerical assessment, 

practicability of the proposed system was 

demonstrated in a Gradio-based graphical user 

interface (GUI) as shown in Figure 5. This interface 

allows testing of phishing URLs in real-time where 

users can enter and test suspicious links directly. 

Implementation of such an interactive tool 

demonstrates usability of the model as a contribution 

to research, as well as, one of the solutions that can 

be deployed in the actual world to detect phishing in 

practice. 

 

Table   5  .Performance comparison by time, 

complexity, and memory 

 

 
As shown in Table 5.  traditional machine learning 

approaches are computationally lightweight but lack 

robustness against obfuscation. Character-level and 

ensemble models improve accuracy but often incur 

higher complexity and memory costs. WebPhish, 

while accurate, requires substantial resources and 

retraining. In contrast, the proposed ELMo-based 

model achieves a significant reduction in generation 

time (from 12.6 seconds to 0.239 seconds for ten 

URLs) while maintaining moderate complexity and 

Study / Authors Dataset Used Methodology 
Reported 

Performance 
Limitations 

Proposed 

Approach 

Improvements 

Heidari et al. 

(2020) 
Custom annotated 

ELMo/GloVe + 

profile-conditioned 

NN 

Accuracy ~0.98 

Relies on 

annotation quality, 

domain-specific 

Applies ELMo 

directly to URLs, 

avoiding 

annotation 

dependency 

Aggarwal (2023) 
Malware API 

dataset 

Word2Vec, ELMo, 

BERT embeddings 

+ classifiers 

Accuracy up to 

0.93 

Modest dataset 

size, dynamic-only 

API features 

Larger balanced 

dataset, contextual 

embeddings for 

phishing URLs 

Almousa & Anwar 

(2023) 

Phishing URL 

corpus 

CharacterBERT, 

LSTM, CNN 
Accuracy ~99.6 

URL-only signals, 

dataset imbalance 

Captures semantic 

+ syntactic cues, 

resilient to 

obfuscation 

Rastakhiz et al. 

(2024) 
Public phishing set 

QuickCharNet 

(char-CNN 

pooling) 

+4.9% over 

baselines 

Tokenizer 

sensitivity, modest 

gains 

Higher 

generalization via 

contextual 

embeddings 

Alshattnawi et al. 

(2024) 

Benchmark 

datasets 

ELMo/BERT vs 

Word2Vec/GloVe 
Accuracy 90–94% 

Platform-specific, 

domain drift 

Applies contextual 

embeddings to 

phishing URLs 

directly 

Khan et al. (2024) 
Phishing URL 

dataset 

RF, SVM, Logistic 

Regression 
Accuracy ~88% 

Handcrafted 

features, limited 

generalization 

Eliminates manual 

features, improves 

robustness 

Opara et al. (2024) WebPhish dataset 
WebPhish (URL + 

HTML CNN) 
Accuracy ~98% 

Computationally 

intensive, 

retraining needed 

Efficient 

embeddings, 

reduced generation 

time 

Mahmud et al. 

(2025) 
PhiUSIIL dataset 

Stacking ensemble 

(ML + DL) 
Accuracy ~99.9% 

Overfitting, URL-

only features 

Balanced 

performance, 

reduced false 

negatives 

Proposed ELMo-

based model 

(2025) 

PhiUSIIL dataset 

ELMo contextual 

embeddings + 

DNN 

Accuracy 95%, F1 

0.95, Gen. time 

↓12.6s→0.239s 

— 

Robust, efficient, 

minimizes false 

negatives 

 

Approach / Study Generation Time 
Computational 

Complexity 
Memory Usage Notes 

Traditional ML (RF, 

SVM, LR) 
Fast (<1s per batch) Low Low 

Relies on handcrafted 

features, limited 

generalization 

Character-level models 

(LSTM, CNN, 

CharacterBERT) 

Seconds per batch Moderate Moderate 

Robust to non-standard 

vocabularies but URL-

only signals 

WebPhish (CNN on 

URL+HTML) 
High (>10s per batch) High High 

Accurate but 

computationally 

intensive, retraining 

needed 

Stacking ensemble 

(Mahmud et al., 2025) 
Not reported Very High Very High 

Risk of overfitting, 

heavy resource 

consumption 

Proposed ELMo-

based model 

↓12.6s → 0.239s (10 

URLs) 

Moderate (ELMo + 

DNN) 
Moderate 

Efficient, robust, 

minimizes false 

negatives 
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memory usage. This balance of efficiency and 

robustness highlights its suitability for real-time 

phishing detection scenarios. 

 
FIGURE  5. GUI for Real-time Testing 

 

7. Conclusion  

 

The paper discussed a URL-based phishing detector 

that replaces the weak hand-designed features with 

contextual embeddings of ELMo and a small MLP 

model. This way, early screening can be 

accomplished without page-fetching while keeping 

the 80/20 stratified evaluation protocol consistent 

and reproducible. The study addressed the limitations 

of traditional machine learning approaches, which 

often rely on handcrafted lexical features that are 

vulnerable to obfuscation techniques and fail to 

generalize across diverse phishing strategies. By 

leveraging contextual embeddings, the proposed 

framework captures both syntactic and semantic 

dependencies within raw URLs, thereby enhancing 

robustness against adversarial manipulations such as 

homoglyph substitutions and random string 

insertions. 

 

Experimental evaluation on the PhiUSIIL dataset 

demonstrated the effectiveness of the model, 

achieving 95% accuracy, 94% precision, 96% recall, 

and an F1-score of 0.95. Beyond accuracy, the 

system exhibited remarkable efficiency, reducing 

generation time from 12.6 seconds to 0.239 seconds 

for ten URLs, while maintaining moderate 

computational complexity and memory usage. This 

efficiency is critical for real-time deployment 

scenarios, where rapid detection can prevent user 

exposure to malicious content. 

 

The contributions of this work are twofold: first, it 

establishes the value of contextualized embeddings 

in phishing detection, moving beyond the constraints 

of feature engineering; second, it demonstrates that 

high accuracy can be achieved without sacrificing 

computational efficiency. These findings underscore 

the practical applicability of the proposed approach 

and its potential to serve as a scalable solution in 

cybersecurity infrastructures. 

 

Overall, the results confirm that contextualized 

representations provide a practical and scalable 

solution to minimizing false negatives in phishing 

detection, offering a significant improvement over 

traditional lexical-based approaches. 
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