



Trends Challenges and Future Direction for Intelligent IoT and Deep Learning: A Review

¹ **O H Fathi**, ¹ **R J Ahmed**

¹ Department of Computer Sciences, College of Computer Sciences and Mathematics, University of Mosul

Article information

Article history:

Received May, 21,2025

Revised May, 29,2025

Accepted June 20, 2025

Keywords:

Intelligent IoT
Deep Learning
Edge Computing
Real-Time Processing
Sensor Networks

Correspondence:

Omar Hadi Fathi

Omar.hadi@uomosul.edu.iq

Abstract

With an emphasis on deep learning and bio-inspired optimization techniques, this paper provides an extensive overview of current developments in voice and emotion detection systems. Advanced recurrent networks like GRU and SVNN, attention-based encoder-decoder frameworks, and hybrid CNN-LSTM architectures are just a few of the models examined in the examined papers. In order to increase robustness, feature extraction methods like MFCC, PLPC, LPCC, and log Mel-filter banks are frequently used in conjunction with data augmentation techniques including speed perturbation, noise injection, and pitch shifting. To enhance feature selection and classifier performance, a number of optimization methods are used, including Particle Swarm Optimization (PSO), Cat Swarm Optimization (CSO), Glowworm Swarm Optimization (GSO), and innovative hybrids like MUPW and GREO. The examined works show state-of-the-art accuracy in a variety of tasks, such as multimodal (audio-visual) recognition systems, Arabic dialect recognition, and emotional speech classification. According to experimental results, there are significant improvements in performance compared to standard models; in certain systems, accuracy rates can approach 99.76%. The increasing efficacy of combining deep learning with intelligent optimization is highlighted in this paper, which also makes recommendations for future developments including transducer-based architectures, real-time adaptation, and domain-specific data augmentation.

DOI: <https://doi.org/10.69513/jncs.v2.i1.a4> ©Authors, 2025, Alnoor University.

This is an open access article under the CC BY 4.0 license (<http://creativecommons.org/licenses/by/4.0/>).

Introduction

Around the globe, years of IoT-related research has tremendously advanced the field of healthcare [1]. More and more devices are interconnected which allows real time monitoring and interactivity. This level of connectivity leads to an exponential growth in the volume of data generated. Such vast data sets can be a challenge to manage and organize. There is immense need for accommodating, analysing, and processing data in real time.

Big data analytics has become extraordinarily important recently, given the increasing amount of data coming from social media, IoT devices, and various

transactional systems [2]. Even though today's overflowing information is an entirely new problem for effective processing, it also offers many actionable insights waiting to be uncovered [3]. The solution to such problems posed on big datasets is utilizing Machine Learning (ML) and advanced deep learning (DL) techniques. Machine learning simplifies the decision-making process by analysing data, while predictive modeling makes forecasting easier. Data-driven decisions depend on specialized ML algorithms. Multi-layered Deep Learning (DL) neural networks make interpreting complex unstructured data such as texts, images, sounds, and others possible [4, 5].

Together, these technologies enable big data analytics across markets to be smarter, faster, and more efficient. Application of deep learning in the IoT domain encompasses smart cities, healthcare, industrial automation, environmental monitoring, and even anomaly detection [6]. The IoT applications in these domains are significantly enhanced due to DL techniques for classification, prediction, and decision making.

The purpose of this review is to examine the application of deep learning in tackling real-time processing, pattern recognition, and decision-making in IoT systems. It also locates different primary areas such as health, surveillance, and smart environments where this integration is altering the industry. The review aims to integrate diverse pieces of research and identify the gaps, challenges, and issues the domain is facing with regards to developments in the field. It also aims to highlight the recent developments in deep learning enabled intelligent, secure, and efficient IoT systems to outline the direction of future studies.

The documents were collected, analysed, and summarized employing a systematic approach towards deep learning and the Internet of Things that used multiple sources. A wide range of sources was utilized including academic search engines and digital libraries like IEEE Xplore, ScienceDirect, SpringerLink, MDPI, Elsevier, and the ACM Digital Library, which contains peer-reviewed articles. Other data from interdisciplinary deep learning research was accessed through Google Scholar. The study narrowed its focus to the application of IoT technologies and deep learning within recent, peer-reviewed journals, conference papers and credible preprints. Carefully compiling these sources allowed the study to maintain scientific credibility, relevance, and diversity from a broad range of perspectives.

Background

The Internet of Things (IoT) is transforming industries by revolutionizing how businesses operate and how individuals interact with products and services across various sectors. Like the transformative effects of personal computers and internet services, IoT is reshaping production methods by enhancing asset utilization, streamlining supply chains, and customizing goods and services through global broadband and big data analytics [7]. Industries such as agriculture and manufacturing are already experiencing structural shifts driven by IoT advancements. With applications ranging from simple sensors to complex autonomous systems like self-driving cars, IoT introduces new efficiencies and operational clarity [8]. IoT refers to an ecosystem of interconnected devices—both mechanical and digital—that communicate over a network, often autonomously, using cloud-based data exchange and

sensor technologies [9, 10]. The IoT architecture typically includes four core components: sensors/devices, connectivity, data processing, and user interfaces, as shown in Figure 1.

Figure 1. Major components of IoT architecture [10]. The

integration of blockchain has emerged as a promising approach to strengthening infrastructure security, prompting many organizations to adopt it for securing device communications and sensitive data [11]. A functional IoT system connects sensor-equipped devices to the cloud, processes the data, and triggers user-desired actions, often requiring real-time inputs through intuitive interfaces.[١٢]

Deep learning has emerged as a transformative force in the realm of IoT and big data analytics, significantly outperforming conventional ML techniques in scalability, feature extraction, and performance across diverse applications [13, 14]. As IoT continues to produce vast volumes of heterogeneous and unstructured data, DL's capacity to autonomously learn deep representations from raw data makes it ideal for handling this complexity [15]. Unlike traditional ML methods that require hand-crafted features, DL provides end-to-end solutions, enabling efficient, automated pattern recognition across various IoT tasks such as image classification, speech recognition, and time-series forecasting.[١٦]

Among the deep learning models shown in Table 1, convolutional neural networks (CNNs) are very effective in processing visual data, while recurrent neural networks (RNNs) models excel at analyzing sequential and time-related data .

Applications of Deep Learning in IoT

Implementation of IoT alongside deep learning technology has seen tremendous growth due to leaps made in its hardware and theory. In this segment, we try to highlight all IoT subsections explaining the state of the work done so far.

Anomaly Detection

Most automated anomaly detection methods focus on manual feature engineering, and this in itself can be tedious and very vulnerable to missing key data points. Unlike traditional techniques, Deep Learning based anomaly detection models are more reliable as they automatically feature extract from the raw sensor data. They have also become more optimized for resource limited settings, allowing true IoT applications within modern systems. Autoencoders, unsupervised spiking neural networks, and other unsupervised techniques have proved particularly potent for attaining anomaly detection without the need for labeled datasets '[17, 18]. These methods enhance IoT systems' scale and flexibility.

Having said that, the absence of publicly available, large-scale datasets that encompass all aspects of IoT remains a significant challenge. This lack of baseline perpetually limits consistent assessment and benchmarking within these frameworks, leading many researchers to utilize proprietary datasets that compromise reproducibility [19]. Yet, many of these models perform exceptionally well, some claiming over 90% accuracy.

Healthcare

Incorporating DL technologies into healthcare IoT applications has greatly improved their diagnostic precision, treatment individualization, and patient monitoring capabilities, all while making effort to fit within IoT hardware limitations. CNNs are some of the most popular DL models used in medical imaging and image interpretation, including X-ray examinations to aid in diagnostic decision making [20]. Even though accuracy rates in classification tasks are very high, reaching up to 95%, further complexity in goals such as image segmentation tends to sustain performance in mean average precision at approximately 60% [21]. Such constraints highlight the need for greater datasets and computational resources for training models which becomes difficult when trying to deploy in resource constrained devices. Regardless, these parameters do not hinder the advancement of DL in disease detection, drug-designing, and precision medicine targeted towards IoT ecosystems. [21, 20]

Recent deep learning (DL) research in healthcare IoT has revealed promising innovations across diverse case studies. Fonseca et al. [22] focused on improving home-based healthcare for patients with chronic conditions, introducing new caregiving capabilities, though lacking cost control and robust statistical validation. Sandstrom et al. [23] linked smartphone sensor data to personal health monitoring using DL, achieving low computational overhead and high performance, but highlighted the need for broader sensor data integration. Liu et al. [24] proposed a smart dental health IoT system combining DL and adaptive lighting, although it struggled to cover larger teeth comprehensively. Klenk et al. [25] explored fall detection using classical and DL algorithms, but the DL model underperformed in recognizing activities of daily living (ADLs).

Table 3 illustrates recent deep learning applications in the healthcare IoT in the areas of personalized care, real-time monitoring, and smart diagnostic systems. These studies demonstrate the versatility of deep learning and its growing importance in the healthcare IoT. However, challenges such as data diversity, model accuracy, and cost-effectiveness remain critical.

Surveillance Systems

In time-sensitive applications like real-time monitoring and predictive maintenance, deep learning models

enable continuous analysis and decision-making since they are excellent at handling real-time and streaming data. Modern surveillance solutions leverage CNNs to analyse video feeds, detect anomalies, and recognize faces or activities with high precision. Amazon Rekognition, for example, offers real-time image and video analysis for facial recognition and traffic monitoring [26]. Hanwha Techwin's Q-AI and X-AI series utilize deep-learning algorithms to identify people and objects with enhanced accuracy [27]. Similarly, Hikvision's DeepinView series applies deep learning for efficient object and activity recognition in various environments [28]. NVIDIA's Jetson platform powers smart surveillance with high-performance computing capabilities for tasks like object detection and facial recognition [29]. These commercial implementations underscore deep learning's crucial role in modern surveillance, despite ongoing challenges in data privacy, system scalability, and computational demands.

The study [30] addresses object detection based on deep learning and its applications in the field of small object detection using remote sensing. Key datasets and evaluation methods widely used in modern remote sensing object detection techniques are collected. The problem of irregular object detection using remote sensing images is also discussed, and methods for detecting small objects in remote sensing images are reviewed.

Detecting and aligning faces in unconstrained environments is challenging due to varying poses, lighting, and occlusions. Recent studies show that deep learning methods can achieve impressive performance on both of these tasks. In [31], a deep cascade multi-task framework was proposed that exploits the intrinsic link between detection and alignment to enhance their performance. Specifically, the framework relies on a three-stage cascade architecture of carefully designed deep convolutional networks to predict face and landmark locations in a coarse-to-fine manner.

Smart Environments

The integration of deep learning alongside the Internet of Things facilitates real-time analytical feedback from numerous sensors and devices that aid in urban planning, energy-efficient systems, intelligent personalization of traffic, consumption, and living. Autonomous transportation networks, smart traffic and power management systems, home automation, environmental supervision, and advanced public safety serve as examples.

The study [32] discusses smart cities and outlines all their market applications and technologies. The authors research the smart city's framework concentrating on the IoT ecosystem along with its benefits and challenges for urban areas. They also analyse the impacts of artificial intelligence in smart cities and IoT,

using complex information data structures, and highlight the increased demand from data analytics. The authors in [33] address numerous issues, transportation, energy administration, and health care. They address the need for more algorithms and tools to analyse data and guide the future study proposals . Computing Environment

The convergence of DL and IoT has led to smarter systems capable of handling vast amounts of unstructured data from sensors and devices. As IoT deployments expand, the need for real-time, low-latency, and energy-efficient DL processing has become critical. This has given rise to new computing paradigms such as cloud, edge, fog, and hybrid computing, each offering unique benefits and trade-offs. Cloud-based models support powerful training and global data integration [34], while edge computing brings intelligence closer to devices, reducing latency and preserving privacy [35]. Recent advances in model optimization, federated learning, and tinyML [36] are pushing DL-IoT integration to new heights.

Xuan et al. [37] explored hardware-based optimization approaches such as parallel acceleration, quantization, and pruning, demonstrating improvements on edge devices. Wei et al. [38] tackled cloud-related limitations by leveraging fog computing and proposed a deep

reinforcement learning framework to optimize latency and resource allocation. Tang et al. [39] focused on enhancing DL model efficiency by applying the SqueezeNet architecture on ARM hardware using the Compute Library and NEON optimizations, achieving better latency in offloading scenarios.

To address data privacy and responsiveness, Lyu et al. [40] developed a Fog-Embedded Privacy-Preserving DL (FPPDL) framework that showed high accuracy and scalability. Diro et al. [41] presented a distributed learning model for intrusion detection, highlighting better resilience and adaptability against Zero-Day attacks compared to centralized systems. Li et al. [42] proposed a dynamic model that supports both online/offline scheduling and divides DL tasks between edge and cloud layers to reduce transmission delay and traffic congestion. Furthermore, Zhang et al. [43] designed the Adaptive Deep Computational Model (ADCM) that uses adaptive dropout rates and crowdsourcing techniques to enhance model robustness and overcome data labelling challenges in industrial IoT applications.

Finally, another study [44] presented an edge-based decision-making framework using deep reinforcement learning and Markov Decision Processes to balance data freshness and communication cost effectively. Collectively, these studies reflect a growing emphasis on hybrid IoT architectures that intelligently coordinate edge, fog, and cloud resources. However, persistent

challenges remain in optimizing energy consumption, ensuring model scalability, managing real-time data streams, and maintaining data security across distributed environments.

Table 2 reviews studies present diverse deep learning approaches tailored for IoT environments, focusing on edge, fog, and hybrid computing models.

Table 1

				multi-edge caching study
--	--	--	--	--------------------------

Table 2

Reference	Main Focus	Case Study	Advantages	Weaknesses
[22]	Improve home-based healthcare for chronic conditions	Patients with multiple chronic conditions	Introduces new caregiving amenities	Limited cost control; lacks statistical proof of effectiveness
[23]	Link smartphone sensor data to individual health using DL	Personal health assistance	Simple structure, low computational burden, high performance	Requires broader sensor data for more robust insights
[24]	Develop smart dental health IoT system using DL and smart hardware	Smart-dental health IoT system	Compact design and adaptable lighting	Incomplete coverage for larger teeth
[25]	Fall detection using classical and DL algorithms	Fall detection for elderly or at-risk users	Explores both traditional and DL-based methods	DL models showed lower accuracy in recognizing ADLs

Table 3

Reference	Main Idea	DL Model	Dataset	Key Findings
[37]	Evaluates parallel acceleration, quantization & pruning on edge (Tegra X2)	CNN, Lightweight CNN	VGGFACE2	Good performance with hardware/software combo; high hardware cost
[38]	Fog-based IoT using RL for joint optimization of storage & radio resources	DNN	Custom dataset	Reduced latency; resource coordination is challenging
[39]	CNN offloading on IoT using SqueezeNet + ACL	CNN	Not used	Lower latency; requires high memory and power
[40]	Privacy-preserving DL via 3-tier fog system (FPPDL)	MLP	MNIST, SVHN	Strong privacy & performance trade-off; needs more dataset validation
[41]	Distributed DL model for intrusion detection in IoT	Multi-layer DL	NSL-KDD	Higher accuracy than centralized; more ML comparisons needed
[42]	Edge-cloud collaboration with DL for load balancing & scheduling	CNN	Kaggle dataset	Reduced data & tasks; slower initial efficiency
[43]	Adaptive dropout + crowdsourcing for label scarcity in industrial IoT	ADDCM	CUAVE, SNAE2	Prevents overfitting; dependent on model initialization
[44]	DRL for smart caching at edge without data popularity info	DRL	Not used	Reduces cost & maintains data freshness; lacks

Model	Features	Weaknesses
Convolutional Neural Network (CNN)	It is a discriminative model that uses supervised learning. It excels at spatial feature extraction, offering translation invariance and shared weights, which makes it suitable for image and video analysis, gaming, medical imaging, and recommendation systems	- Needs large datasets - Prone to overfitting
Recurrent Neural Network (RNN)	It is also a discriminative, supervised model, well-suited for sequential and time-series data due to its memory units that track previous inputs. Its applications include speech recognition and natural language processing	- Complex training - Vanishing gradients
Autoencoder (AE)	It is a generative, unsupervised learning model used for automatic feature extraction, dimensionality reduction, and handling noisy data. It is best applied in image compression and recommendation systems.	- Sensitive to data structure
Restricted Boltzmann Machine (RBM)	It is a generative model and effective for feature extraction and dimensionality reduction. Common uses include collaborative filtering and intrusion detection	- Complex training
Deep Belief Network (DBN)	Built from stacked RBMs, it extracts high-level features using a greedy layer-wise training method. It finds applications in image and text recognition	- High computation cost - Difficult to train
Generative Adversarial Network (GAN)	It is a hybrid model that typically operates under semi-supervised learning. It consists of two networks — a generator and a discriminator — and is powerful for generating new data and handling noisy inputs.	- Sensitive to parameters

These studies emphasize the importance of integrating deep learning models with IoT systems through edge,

fog, and hybrid computing environments. Some studies focus on improving performance using hardware acceleration and lightweight CNNs to enable on-device AI.

Challenges

Although DL techniques have been effectively applied across various IoT domains, several critical challenges still hinder their full potential. One of the foremost issues is the constant need for clean and well-managed data, as DL models heavily rely on high-quality input for optimal performance. However, IoT systems generate massive volumes of noisy, unstructured, and often unlabeled data, making efficient data collection and management a daunting task. Another noteworthy obstacle is refining the training of deep models. While having a deeper network gives one the ability to learn more intricate features, it also adds problems like gradient vanishing, overfitting, and increasingly complicated training processes.

The limited computing power of IoT devices creates hardware limitations that make it infeasible to run sophisticated DL models on the edge. Relieving efforts attempt to address this issue by either turning the IoT devices into passive data-drawing robots or designing simplified networks capable of lightweight learning. However, such approaches are still underdeveloped and lack a sufficient amount of exploration.

Pair these challenges with the velocity of IoT data and the rest create a bigger problem; data needs to be processed in real time. This level of demand for data processing and analysis requires considerable amounts of computational strength. In this case, deep learning GPUs, ample storage, and adaptable structures are required for the constant flow of data. Even with the ongoing attempts to integrating deep learning with the 'smart' world, achieving these goals is essential.

Future Directions

The intersection between the Internet of Things (IoT) and deep learning is likely to change quickly due to the demand for more intelligent, rapid, and flexible systems. One current trend is the creation of multi-modal deep learning, which focuses on intergrating different types of data from IoT devices at the same time. Moreover, there is an increase in the need for semi-supervised and unsupervised learning approaches to lessen the reliance on labeled information.

The mobility aspect of IoT devices also creates new possibilities - combining mobile data with DL models and context-sensitive processing will enhance service delivery. Another important area of deep learning application is cybersecurity, especially in the context of cyber-physical IoT systems, where monitoring system logs for anomalous activity is essential. The other side of the coin is the exploding volume of IoT data; developing efficient approaches to managing and storing such large volumes of data is becoming critical.

5G networks and edge AI are also likely to influence the convergence of these elements by making it possible to process data more rapidly and with less delay in a distributed manner.

Conclusion

The integration of smart gadgets and their real-time data generation has transformed industries, and the Internet of Things (IoT) serves as a prime example. Nonetheless, there is an undeniable, persisting problem in burden: how to expertly manage all of this diverse, massive, and exquisite data. Fortunately, deep learning offers a self-sufficient means for data processing, data insight retrieval, and overall efficient data management. This paper analyses the most relevant issues of concern, the most developed opportunities, and future concerns of attention in the combination of deep learning with IoT systems.

In monitoring patient activity and with the use of smart sensors, disease diagnosis has become an essential aspect of the healthcare sector. It is performed through the deep learning technique. Furthermore, face recognition and real time activity detection are performed in surveillance systems using deep learning. Smart environments such as adaptive traffic control systems and energy-efficient system automations have also become prevalent.

Efficient DL-IoT integration demands low-latency, high-performance systems. Edge, fog, and hybrid computing bring intelligence closer to the source, reducing delay. Innovations like federated learning and hardware optimizations enable real-time learning on limited-resource devices. Recent frameworks also emphasize privacy, dynamic scheduling, and load balancing in distributed architectures.

Key challenges in intelligent IoT systems include noisy, unlabeled data, high training costs, and limited hardware capacity. Running deep learning models on edge devices is difficult due to energy and memory constraints. To overcome these, future research must focus on multi-modal learning, lightweight DL models, and adaptive, privacy-preserving solutions. Emphasis on scalable architectures and hardware-software co-design will drive secure, smart IoT ecosystems.

References

- 1.Rafique S H, Abdallah A, Musa NS, & Murugan T. Machine learning and deep learning techniques for internet of things network anomaly detection—current research trends. *Sensors*. 2024;24(6):1968.
- 2.Zhang Q, Yang LT, Chen Z, & Li P. A survey on deep learning for big data. *Information Fusion*. 2018;42:146-157.
- 3.Tyagi, AK. Machine learning with big data. In *Machine Learning with Big Data* (March 20, 2019). Proceedings of International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur-India १, १.
- 4.Kumari J, Kumar E, & Kumar D. A structured analysis to study the role of machine learning and deep learning in the healthcare sector with big data analytics. *Arch Computat Meth Enginee*. 2023;30(6):3673-3701.

5.Muhammad A N, Aseere A M, Chiroma H, Shah H, Gital AY, & Hashem I A T. Deep learning application in smart cities: recent development, taxonomy, challenges and research prospects. *Neural computing and applications*. 2021;33:2973-3009.

6.Khalil R A, Saeed N, Masood M, Fard YM, Alouini MS, & Al-Naffouri, T Y. Deep learning in the industrial internet of things: Potentials, challenges, and emerging applications. *IEEE Internet of Things Journal*, 2021;8(14): 11016-11040.

7.Sony M. Industry 4.0 and lean management: a proposed integration model and research propositions. *Produ & Manufactu Res*. 2018;6(1), 416-432.

8.Jeong Y, Son S, Jeong E, & Lee B. An integrated self-diagnosis system for an autonomous vehicle based on an IoT gateway and deep learning. *Appl Sci*. 2018;8(7):1164.

9.Khan Z, Lehtomaki J J, Iellamo S I, Vuohoniemi R, Hossain E, & Han Z. IoT connectivity in radar bands: A shared access model based on spectrum measurements. *IEEE Communications Magazine*. 2017;55(2): 88-96.

10.Laghari A A, Li H, Khan A A, Shoulin Y, Karim S, & Khani MAK. Internet of Things (IoT) applications security trends and challenges. *Discover Internet of Things*. 2024;4(1): 36.

11.Alam,T. Blockchain and its Role in the Internet of Things (IoT). arXiv preprint arXiv:1902.09779. 2019.

12.Gusev M, & Dustdar S. Going back to the roots—the evolution of edge computing, an iot perspective. *IEEE Internet Computing*. 2018; 22(2):5-15.

13.Mohammadi M, & Al-Fuqaha A. Enabling cognitive smart cities using big data and machine learning: Approaches and challenges. *IEEE Communications Magazine*. 2018;56(2):94-101.

14.Ma X, Yao T, Hu M, Dong Y, Liu W, Wang F, & Liu J. A survey on deep learning empowered IoT applications. *IEEE Access*. 2019;7, 181721-181732.

15.Rodrigues AP, Fernandes R, Shetty A, Lakshmanna K A, & Shafi R. M. [Retracted] Real-Time Twitter Spam Detection and Sentiment Analysis using Machine Learning and Deep Learning Techniques. *Computational Intelligence and Neuroscience*. 2022;(1):5211949.

16.Zantalis F, Koulouras G, Karabetos S, & Kandris D. A review of machine learning and IoT in smart transportation. *Future Internet*. 2019; 11(4): 94.

17.Hasan M, Islam M M, Zarif M I I, & Hashem M M A. Attack and anomaly detection in IoT sensors in IoT sites using machine learning approaches. *Internet of Things*. 2019; 7:100059.

18.Jia Y, Cheng Y, & Shi J. Semi-supervised variational temporal convolutional network for IoT communication multi-anomaly detection. In *Proceedings of the 2022 3rd International Conference on Control, Robotics and Intelligent System*. 2022;pp: 67-73.

19.DeMedeiros K, Hendawi A, & Alvarez M. A survey of AI-based anomaly detection in IoT and sensor networks. *Sensors*. 2023;23(3):1352.

20.Bolhasani H, Mohseni M, & Rahmani AM. Deep learning applications for IoT in health care: A systematic review. *Informatics in Medicine Unlocked*. 2021;23:100550.

21.Kong L, & Cheng J. Classification and detection of COVID-19 X-Ray images based on DenseNet and VGG16 feature fusion. *Biomedical Signal Processing and Control*. 2022;77:103772.

22.Mendes D, Lopes M J, Romão A, & Rodrigues IP. Healthcare computer reasoning addressing chronically Ill societies using IoT: deep learning AI to the rescue of home-based healthcare. In *Chronic Illness and Long-Term Care: Breakthroughs in Research and Practice* (pp. 720-736). IGI Global. 2019.

23.Sandstrom GM, Lathia N, Mascolo C, & Rentfrow P J. Opportunities for smartphones in clinical care: the future of mobile mood monitoring. *J Clin Psychi*. 2016;77(2), 13476.

24.Liu L, Xu J, Huan Y, Zou Z, Yeh S C, & Zheng L R. A smart dental health-IoT platform based on intelligent hardware, deep learning, and mobile terminal. *IEEE journal of biomedical and health informatics*, . 2019;24(3): 898-906.

25.Klenk J, Schwickert L, Palmerini L, Mellone S, Bourke A, Ihlen E A, ... & Farseeing C. The Farseeing real-world fall repository: a large-scale collaborative database to collect and share sensor signals from real-world falls. *European review of aging and physical activity*. 2016;13, 1-7.

26.Bhatta A, Albiero V, Bowyer KW, & King M C. The gender gap in face recognition accuracy is a hairy problem. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*. 2023; 303-312.

27.Shaik, T, Tao, X., Higgins, N., Li, L., Gururajan, R., Zhou, X., & Acharya, U. R. (2023). Remote patient monitoring using artificial intelligence: Current state, applications, and challenges. *Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery*, 13(2), e1485.

[*^]Dragonas, E., Lambrinoudakis, C., & Kotsis, M. (2023). IoT forensics: Analysis of a HIKVISION's mobile app. *Forensic Science International: Digital Investigation*, 45, 301560.

[*^]Cheng, S., Zhu, Y., & Wu, S. (2023). Deep learning based efficient ship detection from drone-captured images for maritime surveillance. *Ocean engineering*, 285, 115440.

[*^]Wang, X., Wang, A., Yi, J., Song, Y., & Chehri, A. (2023). Small object detection based on deep learning for remote sensing: A comprehensive review. *Remote Sensing*, 15(13), 3265.

[*^]Zhang, K., Zhang, Z., Li, Z., & Qiao, Y. (2016). Joint face detection and alignment using multitask cascaded convolutional networks. *IEEE signal processing letters*, 23(10), 1499-1503.

[*^]Aslam, S., & Ullah, H. S. (2020). A comprehensive review of smart cities components, applications, and technologies based on internet of things. arXiv preprint arXiv:2002.01716.

[*^]Jullah, Z., Al-Turjman, F., Mostarda, L., & Gagliardi, R. (2020). Applications of artificial intelligence and machine learning in smart cities. *Computer Communications*, 154, 313-323.

[*^]Raviprasad, B., Mohan, C. R., Devi, G. N. R., Pugalenth, R., Manikandan, L. C., & Ponnuasamy, S. (2022). Accuracy determination using deep learning technique in cloud-based IoT sensor environment. *Measurement: Sensors*, 24, 100459.

[*^]Wang, F., Zhang, M., Wang, X., Ma, X., & Liu, J. (2020). Deep learning for edge computing applications: A state-of-the-art survey. *IEEE Access*, 8, 58322-58336.

[*^]Alajlan, N. N., & Ibrahim, D. M. (2022). TinyML: Enabling of inference deep learning models on ultra-low-power IoT edge devices for AI applications. *Micromachines*, 13(6), 851.

[*^]Qi, X., & Liu, C. (2018, October). Enabling deep learning on iot edge: Approaches and evaluation. In *2018 IEEE/ACM Symposium on Edge Computing (SEC)* (pp. 367-372). IEEE.

[*^]Wei, Y., Yu, F. R., Song, M., & Han, Z. (2018). Joint optimization of caching, computing, and radio resources for fog-enabled IoT using natural actor-critic deep reinforcement learning. *IEEE Internet of Things Journal*, 6(2), 2061-2073.

[*^]Tang, J., Sun, D., Liu, S., & Gaudiot, J. L. (2017). Enabling deep learning on IoT devices. *Computer*, 50(10), 92-96.

[*^]Lyu, L., Bezdek, J. C., He, X., & Jin, J. (2019). Fog-embedded deep learning for the Internet of Things. *IEEE Transactions on Industrial Informatics*, 15(7), 4206-4215.

[*^]Diro, A. A., & Chilamkurti, N. (2018). Distributed attack detection scheme using deep learning approach for Internet of Things. *Future Generation Computer Systems*, 82, 761-768.

[*^]Li, H., Ota, K., & Dong, M. (2018). Learning IoT in edge: Deep learning for the Internet of Things with edge computing. *IEEE network*, 32(1), 96-101.

[*^]Zhang, Q., Yang, L. T., Chen, Z., Li, P., & Bu, F. (2018). An adaptive dropout deep computation model for industrial IoT big data learning with crowdsourcing to cloud computing. *IEEE transactions on industrial informatics*, 15(4), 2330-2337.

[44] Zhu, H., Cao, Y., Wei, X., Wang, W., Jiang, T., & Jin, S. (2018). Caching transient data for Internet of Things: A deep reinforcement learning approach. *IEEE Internet of Things Journal*, 6(2), 2074-2083.