

Detecting DDoS Attacks in Network Traffic Based on Supervised Machine Learning

M Alfathe,¹ A Mustapha² , H LMohamed , S A Mostafa
Y K Yousif , A H Al-Shakarchi

¹ College of Information Technology, Ninevah University, Mosul-Iraq, ²College of Computer and AI, Northern Technical University, Mosul, Iraq ³ Faculty of Computing, University Malaysia Pahang Al-Sultan Abdullah, Pekan 26600, Pahang, Malaysia.

Article information

Article history:

Received October 10, 2024

Revised

Accepted November, 20, 2024

Keywords:

Distributed Denial-of-service (DDoS) attacks, Network Security, Machine Learning, CIC-DDOS-2019

Correspondence:

M Alfathe

Mahmood.alfathe@uoninevah.edu.iq

Abstract

One of the major concerns in network security that pose a big challenge to safeguarding networks is distributed denial-of-service (DDoS) attacks. Such attacks often lead to breaches of trust in online systems, cause significant losses in financial markets, and deny services to legitimate users. This study aims to propose a robust method for detecting DDoS attacks accurately. To accomplish this goal, the study investigated several machine learning algorithms in detecting such attacks utilizing the CIC-DDOS-2019 dataset, a well-known benchmark dataset characterized by its comprehensive coverage of DDoS attacks. Five machine learning algorithms have been evaluated: Random Forest (RF), Naive Bayes (NB), Logistic Regression (LR), J48 Decision Tree, and XGBoost based on their performance in detecting and discriminating between DDoS attacks and benign records. The results show high detection capability, with accuracy rates above 99% for all models except for NB. The RF, LR, J48, and XGBoost algorithms can recognize intricate DDoS assault patterns. In addition to comparing several machine learning methods for DDoS detection, this study provides insight into how these models can be helpful in real-world scenarios for improving network security.

DOI: <https://doi.org/10.69513/jnfit.v1.i0.a2>, ©Authors, 2025, College of Engineering, Al-Noor University.

This is an open access article under the CC BY 4.0 license (<http://creativecommons.org/licenses/by/4.0/>).

Introduction

In our contemporary society, the rapid development of digital networks has transformed the means of interaction and conducted businesses, sparing no aspect of social paradigm. Although new technology has numerous benefits, it has also raised numerous challenges, especially, in the field of cybersecurity. One of the most challenging

threats is the Distributed Denial of Service (DDoS) attack. These attacks can overwhelm critical systems and paralyze the most critical and sensitive infrastructures and services. Most disruptive of the challenges has been the withdrawal from the documented effective means of tackling these attacks. This has caused a rapid emergence of novel ways to deal with the attacks and to Artificial Intelligence (AI) in

particular. This has provided much of the resonating research in the use of systems designed to adapt, recognize patterns and DDoS activities in real time. [1].

Outdated DDoS defence mechanisms still describe attacks in simplistic terms. Increasing DDoS sophistication since 2010 [2]. The relationship between DDoS and cyber deception. Each social change increases the intensity. Lack of visibility causes more harm. Basic network data. Loss of frames is a consequence of configured network policies. The 1990s saw the emergence of the DDoS attacks, which were aimed at individual targets [3]. The 2000s saw the creation of networked DDoS attacks with the first generation of botnets. The problem is further compounded, when, the growing sophistication of the attacks. There is a more advanced. Botnets are now essential. Invisibility induces more harm. Defenseless DDoS attacks. Set policy frames documents manual network policies [4].

DoS fraud is a type of cyber fraud that uses various infected gadgets to send a deluge of superfluous traffic to a given system, server or network. Within a short while, the targeted system is totally submerged, making it utterly incapable of responding to legitimate requests. It is now lost to the intended users. These attacked gadgets, notorious as a part of botnet, are equally commanded by the attackers as they aim to inundate a given network or server by sending an enormous amount of data packets. All of them are a target for various industries such as healthcare, finance, and even eCommerce, and they face dire consequences both operationally and financially as a result of these attacks [5].

Figure 1 demonstrates the procedure of a DDoS attack in which attackers utilize bots to flood the victim network with additional traffic. Lawful users who try to access the victim's services are held up or not available at all as the

system is filled. Modern-day DDoS attacks have a great level of sophistication. They utilize advanced tools and techniques, and hence the application of conventional countermeasures proves useless. Thus, businesses are increasingly looking towards machine learning and artificial intelligence-based techniques to detect and respond to such attacks in real-time. These systems track the creation of network traffic in real-time to separate legitimate requests from malicious activities [6].

Machine learning (ML) techniques have introduced advanced approaches for detecting anomalies in typical network behavior by dynamically analyzing network traffic, addressing numerous limitations of older methods. Algorithms like Random Forest, Support Vector Machines (SVM), and Gradient Boosting have demonstrated promise in improving detection rates and mitigating attacks[8].

The primary motivation behind this study is the critical need to strengthen cybersecurity defenses, particularly as DDoS attacks continue to evolve and pose significant threats to sectors such as healthcare and finance. This research aims to enhance the accuracy of detection models, reduce computational complexity, and improve response times for ML algorithms used in identifying DDoS attacks. The study employs the CIC-DDoS2019 dataset to train these algorithms, providing a practical framework applicable to real-world scenarios.

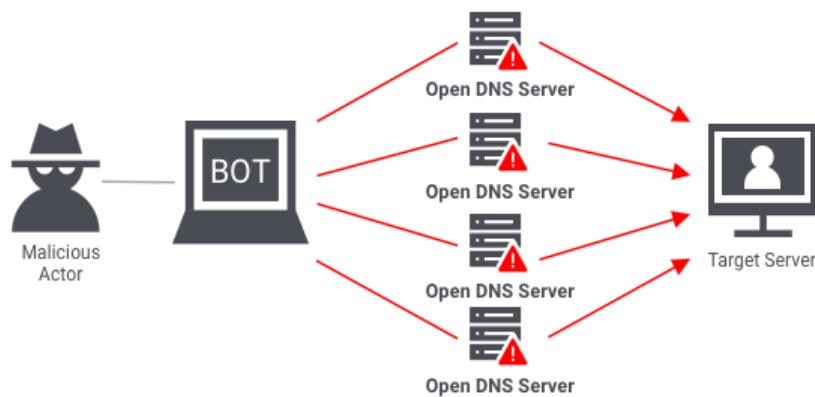


Fig. 1. Distributed Denial of Service attack (DDoS attack) [7]

1. Related Work

Advances in information and digital technology, as well as developments in machine learning and artificial intelligence, have yielded a number of approaches and solutions particular to network domains that have contributed significantly to Distributed Denial-of-Service (DDoS) attack detection.

Bhati et al. [9] Propose a new working model employing artificial intelligence methods in an effort to achieve optimum accuracy in detecting attacks and intrusions. Three AI methods have been employed in the model: AdaBoost Classifier, Random Forest Classifier, and Logistic Regression. Experiments were conducted using the KDD Cup 99 dataset in the detection of attacks and intrusions. The efficiency and precision of this system were established with an accuracy rate of 99.86% across all categories (Normal, Probe, DoS, U2R, and R2L).

To enhance network security, Hnamte et al.[10] proposed a dynamic method for Software-Defined Network (SDN) environments. This paper presented advanced steps to enhance digital infrastructure security against intrusion techniques and sophisticated attacks. Three types of datasets were utilized: InSDN, CICIDS2018, and Kaggle DDoS datasets, with detection accuracy rates of 99.98%, 100%, and 99.99%, respectively. The paper also presented real-world observations regarding the problem of SDN networks. Kumari and Pooja [11] proposed a feature selection techniques-based method for reducing dimension and intrusion detection time without affecting accuracy. The process used dimensionality reduction methods such as Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Factor Analysis, and Recursive Feature Elimination with Cross-Validation (RFECV). In efforts to categorize malicious traffic, machine learning algorithms were utilized that included feature selection techniques, Gaussian Naive Bayes (GNB), Decision Trees (DT), Random Forest (RF), AdaBoost, and Logistic Regression (LR). The study achieved an increased accuracy of 99.98% within 0.582 seconds that is comparable to detection delay time when using the combination of Gaussian Naive Bayes (GNB) and Linear Discriminant Analysis (LDA).

For Internet of Things (IoT) networks, Odumuyiwa et al. [12] separately trained two clustering and two deep learning algorithms against DoS attacks. The focus was placed on Transmission Control Protocol (TCP) attacks and UDP delay attacks. The utilized datasets were Mirai, Bashlite, and CICDoS 2019. The performance of the four algorithms was compared using the Adjusted Mutual Information (AMI) score and accuracy score. Their finding indicated that the autoencoder performed the best across all scenarios.

Najar et al. [13] propose a (BRS + CNN) model incorporating Balanced Random Sampling (BRS) and Convolutional Neural Networks (CNN) to detect DoS attacks in SDN networks. Various mitigation techniques were used to block spoofed IPs, such as filtering, rate limiting, and iptables rules. In addition, a monitoring system was proposed that employs rate identification for tracking blocked IP addresses for effective treatment of legitimate traffic. The proposed system obtained greater than 99.99% precision for multi-class classification and 98.64% for binary classification. Furthermore, it also offers rich contextual information to a target email address. The efficacy and efficiency of the proposed DoS mitigation system were tested through a number of experiments under three scenarios, including attack-free, attack without mitigation, and attack with mitigation.

Finally, Batchu et al. [14] proposed a model that was implemented according to a three-stage deep learning approach: preprocessing data, data balancing, and classification. Data were preprocessed for further processing in the preprocessing phase. The preprocessed data was subsequently balanced using the Conditional Generative Adversarial Network (CGAN) to reduce bias towards majority classes. Finally, traffic was labeled as malicious or benign using a Stacked Sparse Denoising Autoencoder (SSDAE) with the Firefly-Black Widow Optimization (FABWO) hybrid optimization algorithm. Experiments were cross-validated using the CICDDoS 2019 data set and compared to other methods. Table 1 illustrates related work and the variety of machine-learning techniques used for DDoS detection. **Table 1.** Summary of the related work.

Table 1. Summary of the related work

Study	Technique	Application Area	Dataset	Accuracy
Bhati et al. [9]	Ensemble learning approach combining AdaBoost, Random Forest, and Logistic Regression	General network intrusion detection	KDD Cup 99	99.86%
Hnamte et al.[10]	Deep Neural Networks (DNN) for traffic classification	SDN environments	InSDN, CICIDS2018, and Kaggle DDoS	99.98%, 100%, and 99.99%, respectively

Kumari and Pooja [11]	Dimensionality reduction (PCA, LDA, RFECV) combined with machine learning models (GNB, DT, RF, Logistic Regression)	IoT and general intrusion detection	N/A	99.98% accuracy with LDA and GNB in 0.582 s
Odumuyiwa et al. [12]	Machine Learning	(TCP) attacks and UDP delay attacks	Mirai, Bashlite, and CICDoS 2019	N/A
Najar et al. [13]	Convolutional Neural Networks (CNN) combined with Balanced Random Sampling (BRS) and iptables rules	SDN environments	N/A	99.99% for binary classification, 98.64% for multi-class classification
Batchu et al. [14]	Three-stage approach: preprocessing, data balancing using Conditional GAN (CGAN), classification with SSDAE and FA-BWO optimization	IoT and SDN environments	CICDoS 2019	N/A

2. Methodology

This paper proposed a method for detecting DDOS attacks that arise in networks. DDOS attacks are considered the most severe attacks since they deny services to legitimate users, resulting in a range of consequences, such as financial losses, reputation damage, data vulnerability, etc.

To complete this goal perfectly, the proposed method suggests using machine learning algorithms for the detection of DDOS attacks. After conducting many practical experiments in detecting this type of cyber-attacks, the choice was made on five types of machine learning algorithms that have proven their efficiency and merit in detecting these attacks. In fact, these algorithms were selected from different families, some of them belong to the probabilistic family like (NB) and others depend on the decision tree such as (Random Forest, J48) and some of them relay on statistical methods as (Logistic regression), and for the last algorithm, it was selected from the advanced machine learning families named (XGboost), which is one of the most advanced algorithms that lean on the decision tree.

Business and data understanding concentrate on several key functions: identifying, collecting, and analyzing the selected dataset to fulfill the objectives. Since the proposed work focuses on detecting DDOS attacks, hence, in this correlated phase, the dataset should be acquired from a trusted source. For this work, the CIC-DDOS2019 dataset is obtained from the Canadian Institute for Cybersecurity, which is located at the University of New Brunswick in Fredericton. After determining the selected dataset, the next step includes specifying the dataset quality, such as defining missing values, detecting errors, and reporting any problem encountered when dealing with the dataset. These

The objective of the proposed method is to design a lightweight tool that has the capability of detecting DDOS attacks with high accuracy, and low both false negative and positive rates. This is done by making performance comparisons among different learned models (NB, RF, J48, LR, and XGboost) on the selected dataset to select the best one of them. The work has adopted a CIC-DDOS2019 dataset, a modern, safe benchmark dataset for intrusion detection that mimics the real-world DDOS attack scenarios (PCAPs) created in 2019[15]. Cross-Industry Standard Process for Data Mining (CRISP-DM) is the selected methodology for this work. Figure 2 below illustrates CRISP-DM. Crisp-DM is one of the favorite hierarchical methods in the data mining community. This model is extensively used in data mining processes since it divides the complex data mining task into a set of six simple phases. Such division makes data mining projects easy to execute, manageable, less costly, efficient, and reliable [17]. The following subsections outline the six phases of CRISP-DM as related to our proposed method.

2.1 Business & Data Understanding

steps are important to create a comprehensive view of datasets. Note that all attributes should be examined and analyzed in this phase. CICFlowMeter-V3 is adopted to analyze this dataset based on timestamps, port numbers, sources, destination IP addresses, and many other attributes. Table .2 shows the names of features related to the CIC-DDOS2019 dataset.

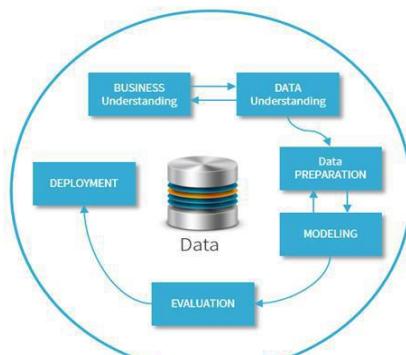


Fig. 2. Illustration of CRISP-DM [16]

Table

NO	Feature name	NO	Feature name	NO	Feature name	No	Feature name
1	Unnamed: 0	23	Flow Packets/s	45	Bwd Packets/s	67	Bwd Avg Bytes/Bulk
2	Flow ID	24	Flow IAT Mean	46	Min Packet Length	68	Bwd Avg Packets/Bulk
3	Source IP	25	Flow IAT Std	47	Max Packet Length	69	Bwd Avg Bulk Rate
4	Source Port	26	Flow IAT Max	48	Packet Length Mean	70	Subflow Fwd Packets
5	Destination IP	27	Flow IAT Min	49	Packet Length Std	71	Subflow Fwd Bytes
6	Destination Port	28	Fwd IAT Total	50	Packet Length Variance	72	Subflow Bwd Packets
7	Protocol	29	Fwd IAT Mean	51	FIN Flag Count	73	Subflow Bwd Bytes
8	Timestamp	30	Fwd IAT Std	52	SYN Flag Count	74	Init_Win_bytes_forward
9	Flow Duration	31	Fwd IAT Max	53	RST Flag Count	75	Init_Win_bytes_backward
10	Total Fwd Packets	32	Fwd IAT Min	54	PSH Flag Count	76	act_data_pkt_fwd
11	Total Backward Packets	33	Bwd IAT Total	55	ACK Flag Count	77	min_seg_size_forward
12	Total Length of Fwd Packets	34	Bwd IAT Mean	56	URG Flag Count	78	Active Mean
13	Total Length of Bwd Packets	35	Bwd IAT Std	57	CWE Flag Count	79	Active Std
14	Fwd Packet Length Max	36	Bwd IAT Max	58	ECE Flag Count	80	Active Max
15	Fwd Packet Length Min	37	Bwd IAT Min	59	Down/Up Ratio	81	Active Min
16	Fwd Packet Length Mean	38	Fwd PSH Flags	60	Average Packet Size	82	Idle Mean

17	Fwd Packet Length Std	39	Bwd PSH Flags	61	Avg Fwd Segment Size	83	Idle Std
18	Bwd Packet Length Max	40	Fwd URG Flags	62	Avg Bwd Segment Size	84	Idle Max
19	Bwd Packet Length Min	41	Bwd URG Flags	63	Fwd Header Length.1	85	Idle Min
20	Bwd Packet Length Mean	42	Fwd Header Length	64	Fwd Avg Bytes/Bulk	86	SimillarHTTP
21	Bwd Packet Length Std	43	Bwd Header Length	65	Fwd Avg Packets/Bulk	87	Inbound
22	Flow Bytes/s	44	Fwd Packets/s	66	Fwd Avg Bulk Rate	88	Label

Data preparation

Data preparation starts after gaining the desired dataset. This phase is considered as an extensive one since it usually occupies more than 80% of the time needed to complete the project due to the complexity of this step. The key objective of this phase includes identifying, cleaning, and reconstructing the dataset. For our work, the CIC-DDOS2019 is a good choice since it is designed and oriented to evaluate the DDOS attacks in intrusion detection/prevention systems. This dataset contains a wide spectrum of DDoS attacks and benign records which is helpful to provide a real word scenario to evaluate and test Intrusion Detection Systems (IDSs).

CIC-DDOS-2019 dataset includes 50,063,112 records. From these records, 50,006,249 instances related to DDOS attacks, and 56,863 instances are those as representing normal behavior. Each row in this dataset includes 88 attributes that provide rich information related to network traffic. The dataset has 12 different DDOS attacks, like DNS, NetBIOS, NTP, MSSQL, TFTP, SYN, and SNMP, as shown in Table .3 [18]. Since the selected dataset is considered a big dataset, which contains raw data files of CSV format (11 CSV files), it is difficult to deal with such huge data due to the known limitations in computer resources (processing power, storage space, etc.), as the approximate total size of the data exceeds 17 terabytes, and this size is considered one of the

major challenges in dealing with such a volume of data. The intention was to take a sufficient sample (10% stratified sample) of this data to reflect the total data. First, the CSV files were merged using the panda library in Python to obtain a single file that included all types of DDOS attacks in addition to records of a benign type. The snippet code in Figure 2 below shows the merger operation. The constructed combined CSV file contains all DDOS attacks along with benign records. Next, a stratified 10% sample from the total combined dataset is obtained to ensure fair class distribution. After that, we convert all DDOS attacks type into “ATTACK” labels, reaming the rest records as “BENIGN”. In this way, the proposed tool will be trained on two types of data, attacks and benign, for attack detection.

Cleaning datasets is an important step in the data mining process since it accelerates the processing and minimizes the required memory storage. This step involves handling outlier data like missing, NaN values. Finally, ignoring attributes which have no effect on the detection process. For this reason, Unnamed: 0', 'Flow ID', 'Source IP', 'Destination IP', 'Timestamp', 'SimillarHTTP have been eliminated from the dataset. After applying the previous preliminary preprocessing, the statistics of the data remaining for processing are (1949713) and (5631) instances for attack and benign classes, respectively.

Table 3. CIC-DDOS-2019 Dataset Attacks

Attack	Counts
Benign	56,863
DNS	5,071,011
LDAP	2,179,930
MSSQL	4,522,492

NetBIOS	4,093,279
NTP	1,202,642
SNMP	5,159,870
SSDP	2,610,611
SYN	1,582,289
TFTP	20,082,580
UDP	3,134,645
UDP-Lag	366,461

Modeling

In this phase, different machine learning models have been assessed. For this work, various machine-learning algorithms have been selected, as mentioned previously. These algorithms are Navie Bayes (NB), Decision Tree (Random Forest (RF), and J48), Logistic Regression (LR), and XGBoost. A brief overview of each algorithm is provided as follows.

- **Navie Bayse:** This algorithm relies on the Bayesian theorem and is considered an efficient classification algorithm. NB concentrates on the conditional probability of records in the dataset, such that for each
- **Random Forest:** Leo Breiman from the University of California proposed the RF decision tree [18]. The basic component of RF is many decision trees that are characterized as independent from each other. Voting between these sub trees is used to determine the winning class [19].
- **J48:** Decision tree j48 is a classification algorithm that is considered an extension of the C4.5 tree proposed by Quinlan in 1993. Like all decision trees, this tree relies on the divide and conquer concept. J48 extensively split the dataset based on the attributes to maximize gain. In the J48 tree, each path from the root node to the leaf node represents a classification rule. The decision tree may not give high accuracy in classification if there are many classes, unlike if the classification process is carried out on only two classes, where the decision tree records the highest accuracy [9]. For this work, the J48 was selected due to its high detection rate [20].
- **Logistic Regression:** Logistic Regression (LR) is considered a supervised algorithm for classification problems. Its principal work relies on the fact that independent features can be utilized to predict dependent features. LR predicts the class probabilities based on the sigmoid function and gets the fitted data through maximize likelihood estimation. In other words, the regression process can estimate the dependent variable, X, by knowing a set of values related to the independent variable, Y. Thus, it tries to find the excellent fitting line that reflects the variable's relation[21].

instance X_i in training data related to class C, the probability of the class is determined based upon its attributes X_1, X_2, \dots, X_n . Hence, the class label would be predicted with maximum posterior probability [19]. Bayes's theorem is illustrated in Equation 1 below [20].

$$P(B) = P(A).P(A|P(B)) \quad (1)$$

Where P represents the probability, PAB denotes the posterior probability, P(A) represents the prior probability, and P(B) is the past probability of the predictor.

$$L_n \left(\frac{p}{1-p} \right) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k \quad (2)$$

Where L_n refers to the regression function, p is the variable's probability, X represents the risk factor, and β is constant equal to 1.

- **XGBoost:** Extreme Gradient Boosting (XGBoost) is a powerful, efficient, and scalable algorithm based on gradient boosting concept. Because of its effectiveness and adaptability, it is frequently utilized for both regression and classification problems. This algorithm uses advances like scalable tree construction, efficiently handling missing data, and reducing overfitting. In addition, the XGBoost algorithm could optimize the use of parallel processing, which is very important when dealing with large data sets, and it is considered as faster than other methods executed on a single machine[22].

Implementation and Evaluation

This section thoroughly explains the implementation of the proposed DDOS attack detection, including the experimental design, methods used, and the work's flowchart. Following this, we show and discuss the findings from the experiments that were carried out.

The experiments were conducted on a machine equipped with an Intel(R) Core (TM) i5-2410M CPU 2.30GHz. This processor facilitated the efficient training and evaluation of the machine learning models. The machine was also configured with 8 GB RAM, a Windows 11 operating system. Python programming language has been adopted along with the Jupyter Notebook as a programming interface; this is accomplished by using the release provided by Anaconda, which makes remarkable

integration between Python and Jupyter Notebook, offering an effective environment for creating and testing machine learning models.

The flowchart in Figure .3 depicts the procedure steps for the proposed work and makes it easy to track the implementation of each action step. This flowchart covers important steps, starting from selecting a dataset, data preparation, modeling, and finalizing with assessment and

evaluation of the selected models. The steps are described in detail below.

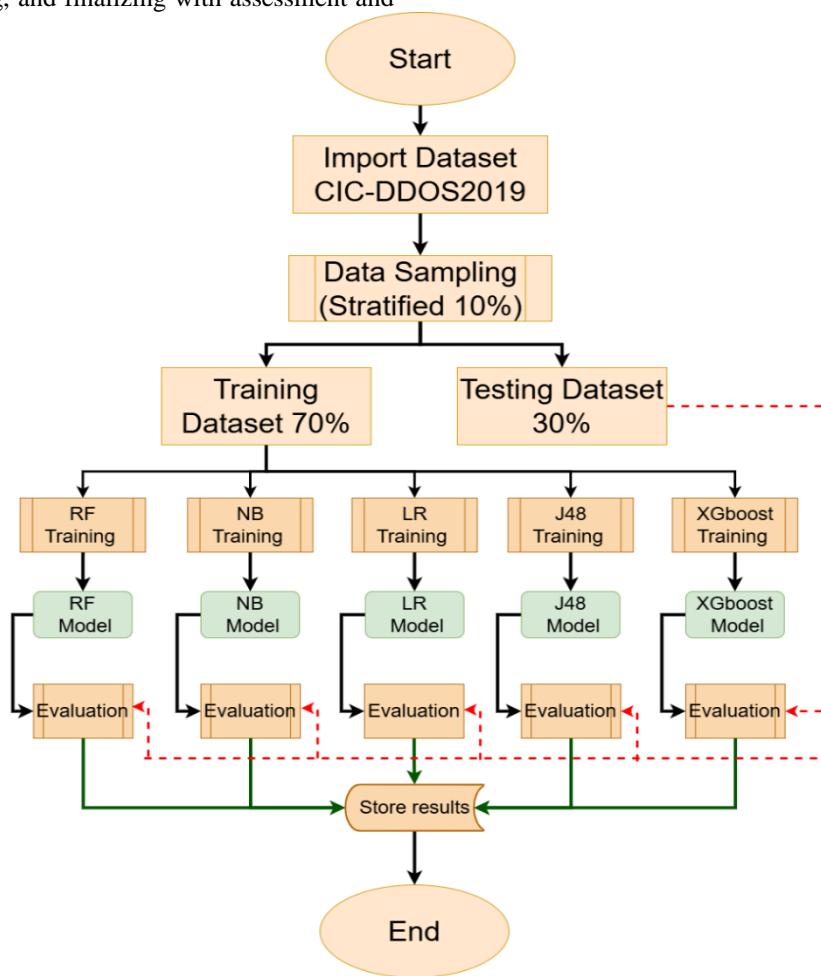


Fig. 3 DDOS Detection and Evaluation Flowchart

First, the data for DDOS detection is imported. This data undergoes a series of initial processing, including merging the data files, which consist of 7 CSV files, where a 10% sample of the total data is taken to form the final data to be used. Then, this data is projected to pre-processing, including dealing with fields with NAN values and empty fields. Secondly, the data set is partitioned into training and testing datasets. The work adopted 30% and 70 % datasets for training and testing, respectively. Next, the training phase is completed, in which five machine learning algorithms are chosen. They are RF, NB, LR, J48, and XGBoost. Each learner receives the same training dataset

and starts its kernel to produce a learned model. Finally, after the training phase is completed, the evaluation phase is started. In this phase, the performance of each model is determined based on five chosen evaluation metrics (Accuracy, recall, precision, specificity, and F-measure), which test each model based on an unseen testing dataset. All evaluation results will be stored and compared to choose the best model, which is then utilized to deploy the final detection tool. Several evaluation metrics are utilized to evaluate the efficiency of our proposed tool. These metrics could reflect the performance of discriminating against malicious and benign traffic. These evaluations are

derived from the well-known Confusion matrix (CM), which reveals all possible detection cases. Figure 4 illustrates what CM is made up of [22].

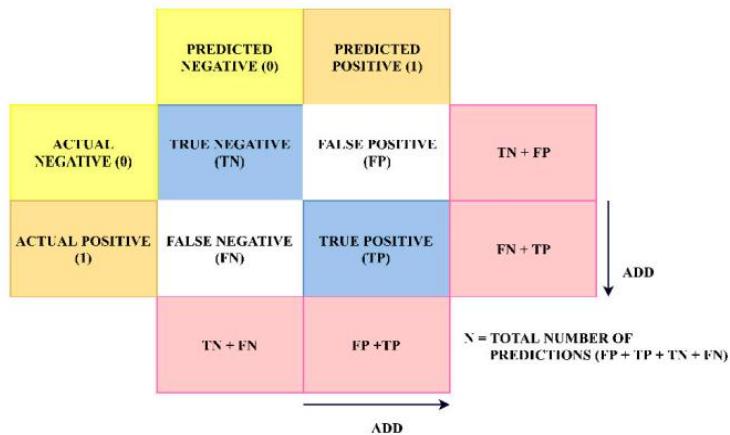


Fig. 4 CM Representation

The following is an explanation of CM components:

- TN: is the quantity of benign cases that are accurately categorized.
- FP: is the quantity of benign cases that are misclassified.
- FN: is the quantity of assault cases that were misclassified.
- TP: The number of assault instances that are accurately classified.

Several evaluation metrics that have been adopted are **accuracy**, **precision**, **recall**, specificity, and **F-measure**. All these metrics are calculated based on information provided in CM matrix as shown below.

$$\text{Accuracy} = \frac{(TP+TN)}{(TP+TN+FP+FN)} \quad (3)$$

$$\text{Recall} = \frac{TP}{(TP+FN)} \quad (4)$$

$$\text{Precision} = \frac{(TP)}{(TP+FP)} \quad (5)$$

$$\text{Specificity} = \frac{(TN)}{(FP+TN)} \quad (6)$$

$$F - \text{measure}(F) = \frac{2 \cdot R \cdot P}{(R + P)}$$

Results

The results of the evaluation metrics of **RF**, **NB**, **LR**, **J48**, and **XGBoost** are shown in Table 4. Experimental results reveal that both J48 and RF show high performance for all metrics, and the scores recorded are nearly perfect. Nevertheless, XGBoost also shows interesting high accuracy that reaches (0.99985). However, NB has a substantially poorer F-measure (0.041969), precision (0.023109), and recall (0.228242), suggesting that it has trouble with this dataset. On the other hand, LR shows a lower F-measure (0.357700), which is directly impacted by the recall value (0.223801), although LR has interesting

accuracy (0.997686) and specificity (0.999921) compared to its F-measure. The low Recall and F1-measure results show that the NB and LR cannot detect the minority class (normal request) compared to other classifiers. From the results, it can be said that both J48 and RF have balanced performance for all metrics, reflecting their robustness. Followed by XGBoost, which shows high recall but low precision. In the opposite of the Naïve Bayse model, which shows a significant decrease in accuracy due to low precision metrics, which is attributed to the misclassification of many instances. Figure 5 shows a model comparison using the Receiver Operator

Characteristics (ROC) curve. In ROC, for every classifier, the True Positive Rate (TPR) is plotted against the False Positive Rate (FPR) using a receiver operating characteristic curve.

This analysis aids in assessing each model's ability to distinguish between the positive and negative classes at different threshold values. The figure shows superior results for both XGBoost and RF achieved in the vertical to-left corner (not visible). Hence, J48 is not plotted since it has the same RF and score.

Conclusion

This paper presents a DDOS detection method after extensively assessing the effectiveness of five classifiers named (NB, LR, J48, XGBoost, and RF) trained on the

CIC-DDOS-2019 dataset. The aggregated overall results showed that advanced classification methods like RF, XGBoost, and J48 are highly recommended for DDOS detection tasks that exceed 99.99% for accuracy. NB shows poor performance due to a larger number of misclassified instances. In fact, the imbalanced dataset is the main reason for the degradation of all lower metrics. Presently, the intention is to focus on low-performance models and try to enhance their classification accuracy by exploring and finding the impact feature and utilizing feature engineering methods in addition to reconsidering imbalanced datasets and using all modern technologies to deal with such unbalanced datasets.

N

Table 4. Evaluation Results

	Accuracy	Precision	Recall	Specificity	F-measure
RF	0.999992	0.997343	1.000000	0.999992	0.998670
NB	0.969998	0.023109	0.228242	0.972140	0.041969
LR	0.997686	0.890459	0.223801	0.999921	0.357700
J48	0.999994	0.999554	0.999554	0.999997	0.997433
XGBoost	0.999985	0.994700	1.000000	0.999985	0.997343

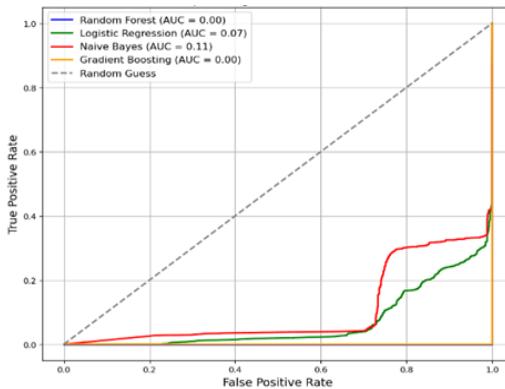


Fig. 5. Receiver Operator (ROC)

References

1. Mittal M, Kumar K, and Behal S. Deep learning approaches for detecting DDoS attacks: A systematic review. *Soft computing*. 2023; 27 (18): 13039–13075. <https://link.springer.com/article/10.1007/s00500-021-06608-1>
2. Mirkovic J, and Reiher P. A taxonomy of DDoS attack and DDoS defense mechanisms. *ACM SIGCOMM Computer Communication Review*. 2004;34(2):39–53. https://www.princeton.edu/~rblee/ELE572Papers/Fall04Readings/DDoS_mirkovic.pdf
3. Kolias C, Kambourakis G, Stavrou A, and Voas J. DDoS in the IoT: Mirai and other botnets. *Computer*. 2017;50(7): 80–84, 2017. DOI: 10.1109/MC.2017.201
4. Jazi H H, Gonzalez H, Stakhanova N, and Ghorbani A A. “Detecting HTTP-based application layer DoS attacks on web servers in the presence of sampling. *Computer Networks*. 2017;121: 25–36, 2017. <https://doi.org/10.1016/j.comnet.2017.03.018>
5. Al-Hadhrami Y and Hussain, F k . DDoS attacks in IoT networks: a comprehensive systematic literature review. *World Wide Web*. 2021;24(3): 971–1001. DOI:10.1007/s11280-020-00855-2
6. Singh A, and Gupta B B. Distributed denial-of-service (DDoS) attacks and defense mechanisms in various web-enabled computing platforms: issues, challenges, and future research directions. *Internat J Semantic Web and Inform Systems (IJSWIS)*, 2022;18(1):1–43. DOI: 10.4018/IJSWIS.297143
7. OneLogin. (n.d.). Diagram of a DDoS attack. Retrieved 2024, from <https://www.onelogin.com>.
8. Sahoo S, Bata KT, Kshirasagar N, Somula R. An evolutionary SVM model for DDOS attack detection in software defined networks. *IEEE Access*. 2020;8:132502–132513. Digital Object Identifier 10.1109/ACCESS.2020.3009733
9. Bhati and Khari M. An ensemble model for network intrusion detection using adaboost, random forest and logistic regress on,” in *Applications of Artificial Intelligence and Machine Learning: Select Proceedings of ICAAAIM*. 2021;777. <https://www.amazon.com/Applications-Artificial-Intelligence-Machine-Learning/dp/9811948305-789> .
10. Hnamte A A. NajarH. Nhung-Nguyen J, Hussain M, and Sugali Sugali MN. DDoS attack detection and mitigation using deep neural network in SDN environment, *Computers & Security*. 2024; 138: 103661.
11. Kumari P, Jain A K. Timely detection of DDoS attacks in IoT with dimensionality reduction,. *Cluster Computing*. 2024; 1–19.
12. Odumuyiwa V and Alabi R. DDOS detection on internet of things using unsupervised algorithms, *J Cyber Secuy Mobil*. 2021;569–592. [file:///C:/Users/hp/Downloads/wendym_+04_Victor%20\(2\).pdf](file:///C:/Users/hp/Downloads/wendym_+04_Victor%20(2).pdf)
13. Najar AA and Naik S M. Cyber-secure SDN: A CNN-based approach for efficient detection and mitigation of DDoS attacks. *Computers & Security*. 2024;139: 103716. <https://doi.org/10.1016/j.cose.2024.103716>
14. Batchu RK, Bikku T, Thota S, Seetha H, Ayoade A A, A novel optimization-driven deep learning framework for the detection of DDoS attacks. *Scientific Reports*. 2024;14(1). DOI:10.1038/s41598-024-77554-9.
15. Sharafaldin I, Lashkari A H, HakakS, and Ghorbani A A. Developing realistic distributed denial of service (DDoS) attack dataset and taxonomy. in *international carnahan conference on security technology (ICCST)*, IEEE, 2019, pp. 1–8.
16. Al-Shakarchi A H, Mostafa SA, Saringat MZ, Mohammed DA, Khaleefah SH, and Jaber M M. A Data Mining Approach for Analysis of Telco Customer Churn. *Al-Sadiq International Conference on Communication and Information Technology (AICCIT)*. 2023, pp. 23–27. doi: 10.1109/AICCIT57614.2023.10218161.
17. Schröer C, Kruse K, and GómezJ M. A Systematic Literature Review on Applying CRISP-DM Process Model. *Procedia Computer Science*. 2021;181:526–534. doi: <https://doi.org/10.1016/j.procs.2021.01.199>.
18. Saheb MCP, . Yadav MS, Babu S, Pujari J J, and J. B. Maddala J B. A Review of DDoS Evaluation Dataset: CICDDoS2019 Dataset,” in *Energy Systems, Drives and Automations*. Szymanski J R, Chanda C K, Mondal,C K and Khan K A, Eds., Singapore: Springer Nature Singapore, 2023; pp: 389–397.
19. Al-A’araji S O, Al-Mamory, Al-Shakarchi A H. Constructing decision rules from naive bayes model for robust and low complexity classification. *Interna J Advan Intelli Informat*.2021; 7(1): 76–88, 2021.
20. Friedman N, Geiger D, and Goldszmidt M. Bayesian network classifiers. *Machine Larning*. 1997; 29:131–163. file:///C:/Users/hp/Downloads/A_10074655_28199.pdf
21. Jain H A. Khunteta and Srivastava S, Churn prediction in telecommunication using logistic regression and logit boost. *Procedia Computer Science*. 2020;167: 101–112, 2020. <https://doi.org/10.1016/j.procs.2020.03.187>
22. Dhaliwal S S, Nahid A A, and Abbas R. Effective intrusion detection system using XGBoost. *Information*. 2018; 9(7): 149 <https://doi.org/10.3390/info9070149>.